【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱(chēng)軸是直線x=1,其圖象的一部分如圖所示.下列說(shuō)法錯(cuò)誤的是
A. abc<0B. a﹣b+c<0C. 3a+c<0D. 當(dāng)﹣1<x<3時(shí),y>0
【答案】D
【解析】
由拋物線的開(kāi)口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱(chēng)軸判定b與0的關(guān)系以及2a+b=0;當(dāng)x=﹣1時(shí),y=a﹣b+c;然后由圖象確定當(dāng)x取何值時(shí),y>0.
A、∵開(kāi)口向下,
∴a<0,
∵對(duì)稱(chēng)軸在y軸右側(cè),
∴﹣>0,
∴b>0,
∵拋物線與y軸交于正半軸,
∴c>0,
∴abc<0,故不選項(xiàng)不符合題意;
B、∵對(duì)稱(chēng)軸為直線x=1,拋物線與x軸的一個(gè)交點(diǎn)橫坐標(biāo)在2與3之間,
∴另一個(gè)交點(diǎn)的橫坐標(biāo)在0與﹣1之間;
∴當(dāng)x=﹣1時(shí),y=a﹣b+c<0,故不選項(xiàng)不符合題意;
C、∵對(duì)稱(chēng)軸x=﹣=1,
∴2a+b=0,
∴b=﹣2a,
∵當(dāng)x=﹣1時(shí),y=a﹣b+c<0,
∴a﹣(﹣2a)+c=3a+c<0,故不選項(xiàng)不符合題意;
D、如圖,當(dāng)﹣1<x<3時(shí),y不只是大于0.故本選項(xiàng)符合題意;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F是平行四邊形ABCD對(duì)角線BD上的兩點(diǎn),DE=EF=BF,連接CE并延長(zhǎng)交AD于點(diǎn)G,連接CF并延長(zhǎng)交AB于點(diǎn)H,連接CH,設(shè)△CDG的面積為S1,△CHG的面積為S2,則S1與S2的關(guān)系正確的是(。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線,交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)E是邊AB上一點(diǎn),且AE=2EB,點(diǎn)P是邊BC上一動(dòng)點(diǎn),連接EP,過(guò)點(diǎn)P作PQ⊥PE交射線CD于點(diǎn)Q.若點(diǎn)C關(guān)于直線PQ的對(duì)稱(chēng)點(diǎn)恰好落在邊AD上,則BP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與y軸交于點(diǎn)A(0,8),與x軸交于B、C兩點(diǎn),其中點(diǎn)C的坐標(biāo)為(4,0).點(diǎn)P(m,n)為該二次函數(shù)在第二象限內(nèi)圖象上的動(dòng)點(diǎn),點(diǎn)D的坐標(biāo)為(0,4),連接BD.
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)連接OP,過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,當(dāng)以O、P、Q為頂點(diǎn)的三角形與△OBD相似時(shí),求m的值;
(3)連接BP,以BD、BP為鄰邊作BDEP,直線PE交x軸于點(diǎn)T.當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(﹣3,0),B點(diǎn)在原點(diǎn)的左側(cè),與y軸交于點(diǎn)C(0,3),點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn)
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C(如圖1所示),那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)此時(shí)點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCP的面積最大,并求出其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在﹣9,﹣6,﹣3,﹣1,2,3,6,8,11這九個(gè)數(shù)中,任取一個(gè)作為a值,能夠使關(guān)于x的一元二次方程x2+ax+9=0有兩個(gè)不相等的實(shí)數(shù)根的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在BC邊上,BC=3CD,分別過(guò)點(diǎn)B,D作AD,AB的平行線,并交于點(diǎn)E,且ED交AC于點(diǎn)F,AD=3DF.
(1)求證:△CFD∽△CAB;
(2)求證:四邊形ABED為菱形;
(3)若DF=,BC=9,求四邊形ABED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上的一點(diǎn)(異于兩個(gè)端點(diǎn)),AB=2BC=2,若BP的垂直平分線EF經(jīng)過(guò)該矩形的一個(gè)頂點(diǎn),則BP的垂直平分線EF與對(duì)角線AC的夾角(銳角)的正切值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com