【題目】 如圖,在菱形中,點在對角線上,且,是的外接圓.
(1)求證:是的切線;
(2)若求的半徑.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)連結OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;
(2)連結BD,交AC于點F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結論.
試題解析:(1)連結OP、OA,OP交AD于E,如圖,
∵PA=PD,
∴弧AP=弧DP,
∴OP⊥AD,AE=DE,
∴∠1+∠OPA=90°,
∵OP=OA,
∴∠OAP=∠OPA,
∴∠1+∠OAP=90°,
∵四邊形ABCD為菱形,
∴∠1=∠2,
∴∠2+∠OAP=90°,
∴OA⊥AB,
∴直線AB與⊙O相切;
(2)連結BD,交AC于點F,如圖,
∵四邊形ABCD為菱形,
∴DB與AC互相垂直平分,
∵AC=8,tan∠BAC=,
∴AF=4,tan∠DAC==,
∴DF=2,
∴AD==2,
∴AE=,
在Rt△PAE中,tan∠1==,
∴PE=,
設⊙O的半徑為R,則OE=R﹣,OA=R,
在Rt△OAE中,∵OA2=OE2+AE2,
∴R2=(R﹣)2+()2,
∴R=,
即⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】下列長度的三條線段能組成三角形的是( )
A.5cm2cm3cmB.5cm2cm2cm C.5cm2cm4cm D.5cm12cm6cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):
次數(shù) 運動員 環(huán)數(shù) | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同學計算出了甲的成績平均數(shù)是9,方差是,請作答:
(1)在圖中用折線統(tǒng)計圖將甲運動員的成績表示出來;
(2)若甲、乙的射擊成績平均數(shù)都一樣,則 ;
(3)在(2)的條件下,當甲比乙的成績較穩(wěn)定時,請列舉出的所有可能取值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=4,∠A=60°,BC=4 ,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在開展“經(jīng)典閱讀”活動中,某學校為了解全校學生利用課外時間閱讀的情況,學校團委隨機抽取若干名學生,調(diào)查他們一周的課外閱讀時間,并根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計表.根據(jù)圖表信息,解答下列問題:
頻率分布表
閱讀時間 (小時) | 頻數(shù) (人) | 頻率 |
|
|
|
|
| |
|
| |
|
| |
|
| |
合計 |
|
|
頻數(shù)分布直方圖
(1)填空: , , , ;
(2)將頻數(shù)分布直方圖補充完整(畫圖后請標注相應的頻數(shù));
(3)若該校由名學生,請根據(jù)上述調(diào)查結果,估算該校學生一周的課外閱讀時間不足三小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個單位后得到△A1B1C1,請畫出△A1B1C1并寫出點B1的坐標;
(2)已知點A與點A2(2,1)關于直線l成軸對稱,請畫出直線l及△ABC關于直線l對稱的△A2B2C2,并直接寫出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;
(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com