解:(1)∵正△ABC,
∴∠ABC=∠C=60°,AB=BC=AC,
∵BM=CN,
∴在△ABM和△BCN中,
,
∴△ABM≌△BCN(SAS),
∴∠CBN=∠BAM,
∵∠BQM=∠BAM+∠ABN,
∴∠BQM=∠CBN+∠ABN,
∴∠BQM=60°,
(2)∵正△ABC,
∴∠ACB=∠ABC=60°,
∵∠QBM=90°,
∴∠1=∠3=30°,
∵正△ABC,
∴BA=CB,∠ABM=∠BCN,
∵BM=CN,
∴在△ABM和△BCN中,
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠QBM=90°,
∴∠BAQ=90°,
∴AQ=
BQ,
∵正△ABC的邊長為1,
∴AQ
2+1=BQ
2,
∴BQ
2=
,
∴BQ=
.
分析:(1)由題意可知∠ABC=∠C=60°,AB=BC=AC,再由BM=CN,根據(jù)全等三角形的判定定理“SAS”,即可推出△ABM≌△BCN,推出∠CBN=∠BAM后,然后根據(jù)外角的性質(zhì)即可推出∠BQM=∠BAM+∠ABN,即∠BQM=∠CBN+∠ABN=∠ABC=60°;
(2)由題意可知∠1=∠3=30°,BA=CB,∠ABM=∠BCN,結(jié)合BM=CN,根據(jù)全等三角形的判定定理“SAS”,推出△ABM≌△BCN,即可得∠BAM=∠QBM=90°,即∠BAQ=90°,然后根據(jù)直角三角形中特殊角的三角函數(shù)即可推出AQ=
BQ,再根據(jù)勾股定理,即可推出BQ的長度.
點(diǎn)評:本題主要考查等邊三角形的性質(zhì)、全等三角形的判定及性質(zhì),勾股定理,關(guān)鍵在于熟練正確的運(yùn)用相關(guān)的性質(zhì)定理,求證相關(guān)三角形全等.