如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設點的橫坐標為,且.
(1).當時,求點的坐標;
(2).當為何值時,四邊形的兩條對角線互相垂直;
(3).猜想線段與之間的數(shù)量關系,并證明你的結論.
解:(1)點在拋物線上,且,,······························ 1分
點與點關于軸對稱,.························································ 2分
設直線的解析式為,
.······················································································· 3分
解方程組,得.································································· 4分
(2)當四邊形的兩對角線互相垂直時,由對稱性得直線與軸的夾角等于所以點的橫、縱坐標相等, 5分
這時,設,代入,得,.
即當時,四邊形的兩條對角線互相垂直.········································· 6分
(3)線段.········································································································ 7分
點在拋物線,且,
得直線的解析式為,
解方程組,得點······················································· 8分
由對稱性得點,··················································· 9分
,
. 10分
解析:略
科目:初中數(shù)學 來源: 題型:
如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設點的橫坐標為,且。
1.當時,求點的坐標;
2.當為何值時,四邊形的兩條對角線互相垂直;
3.猜想線段與之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年湖南省長沙市九年級上學期畢業(yè)模擬考試(1)數(shù)學卷 題型:解答題
如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設點的橫坐標為,且.
(1). (4分) 當時,求點的坐標;
(2). (2分)當為何值時,四邊形的兩條對角線互相垂直;
(3). (4分) 猜想線段與之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com