精英家教網(wǎng)已知:如圖,?ABCD中,點E是AD的中點,延長CE交BA的延長線于點F.
求證:AB=AF.
分析:本題考查平行四邊形性質(zhì)的應用,要證AB=AF,由AB=CD,可以轉(zhuǎn)換為求AF=CD,只要證明△AEF≌△DEC即可.
解答:精英家教網(wǎng)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD且AB=CD.
∴∠F=∠2,∠1=∠D.
∵E為AD中點,
∴AE=ED.
在△AEF和△DEC中
∠F=∠2
∠1=∠D
AE=ED

∴△AEF≌△DEC.
∴AF=CD.
∴AB=AF.
點評:本題考查的是利用平行四邊形的性質(zhì)結(jié)合三角形全等來解決有關線段相等的證明.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案