【題目】平面直角坐標(biāo)系xOy中,對(duì)稱軸平行于y軸的拋物線過點(diǎn)A(1,0)、B(3,0)和C(4,6);
(1)求拋物線的表達(dá)式;
(2)現(xiàn)將此拋物線先沿x軸方向向右平移6個(gè)單位,再沿y軸方向平移k個(gè)單位,若所得拋物線與x軸交于點(diǎn)D、E(點(diǎn)D在點(diǎn)E的左邊),且使△ACD∽△AEC(頂點(diǎn)A、C、D依次對(duì)應(yīng)頂點(diǎn)A、E、C),試求k的值,并注明方向.
【答案】(1)y=2x2﹣8x+6;(2)向下平移6個(gè)單位.
【解析】試題分析:(1)利用待定系數(shù)法直接求出拋物線的解析式;
(2)設(shè)出D,E坐標(biāo),根據(jù)平移,用k表示出平移后的拋物線解析式,利用坐標(biāo)軸上點(diǎn)的特點(diǎn)得出m+n=16,mn=63﹣,進(jìn)而利用相似三角形得出比例式建立方程即可求出k.
試題解析:解:(1)∵拋物線過點(diǎn)A(1,0)、B(3,0),∴設(shè)拋物線的解析式為y=a(x﹣1)(x﹣3)。
∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴拋物線的解析式為y=2(x﹣1)(x﹣3)=2x2﹣8x+6;
(2)如圖,設(shè)點(diǎn)D(m,0),E(n,0)。
∵A(1,0),∴AD=m﹣1,AE=n﹣1。
由(1)知,拋物線的解析式為y=2x2﹣8x+6=2(x﹣2)2﹣2,∴將此拋物線先沿x軸方向向右平移6個(gè)單位,得到拋物線的解析式為y=2(x﹣8)2﹣2,∴再沿y軸方向平移k個(gè)單位,得到的拋物線的解析式為y=2(x﹣8)2﹣2﹣k。
令y=0,則2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0。
根據(jù)根與系數(shù)的關(guān)系得:∴m+n=16,mn=63﹣。
∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45。
∵△ACD∽△AEC,∴ ,∴AC2=ADAE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,
∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動(dòng),請(qǐng)回答:
(1)點(diǎn)A、B、C分別表示的數(shù)是______________________。
(2)將點(diǎn)B 向右移動(dòng)三個(gè)單位長(zhǎng)度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是_____________。
(3)移動(dòng)點(diǎn)A到達(dá)點(diǎn)E,使B、C、E三點(diǎn)的其中任意一點(diǎn)為連接另外兩點(diǎn)之間線段的中點(diǎn),請(qǐng)直接寫出所有點(diǎn)A 移動(dòng)的距離和方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別從B、C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度沿BC、CD運(yùn)動(dòng),到點(diǎn)C、D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個(gè)單位,所得新拋物線與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為D.求:(1)點(diǎn)B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是2,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是AC的一點(diǎn),連接EB,過點(diǎn)A做AM⊥BE,垂足為M,AM與BD相交于點(diǎn)F.
(1)猜想:如圖(1)線段OE與線段OF的數(shù)量關(guān)系為 ;
(2)拓展:如圖(2),若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,AM、DB的延長(zhǎng)線相交于點(diǎn)F,其他條件不變,(1)的結(jié)論還成立嗎?如果成立,請(qǐng)僅就圖(2)給出證明;如果不成立,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com