已知拋物線y=
1
2
x2+x+c
與x軸有兩個不同的交點.
(1)求c的取值范圍;
(2)拋物線y=
1
2
x2+x+c
與x軸兩交點的距離為2,求c的值.
分析:(1)根據(jù)拋物線y=
1
2
x2+x+c
與x軸有兩個不同的交點,得出b2-4ac>0,進而求出k的取值范圍.
(2)根據(jù)兩交點間的距離為2,∴x1-x2=2,由題意,得x1+x2=-2,求出即可.
解答:解:(1)∵拋物線y=
1
2
x2+x+c
與x軸有兩個不同的交點,
得出b2-4ac>0,
∴1-4×
1
2
c>0,
解得:c<
1
2


(2)設拋物線y=
1
2
x2+x+c
與x軸的兩交點的橫坐標為x1,x2,
∵兩交點間的距離為2,∴x1-x2=2,由題意,得x1+x2=-2
解得x1=0,x2=-2,
c
a
=x1•x2=0,
即c的值為0.
點評:此題主要考查了二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷以及圖象與坐標軸交點的性質(zhì),熟練掌握其性質(zhì)是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y=-
12
x+2與拋物線y=a (x+2)2相交于A、B兩點,點A在y軸上,M為拋物線的頂點.
(1)請直接寫出點A的坐標及該拋物線的解析式;
(2)若P為線段AB上一個動點(A、B兩端點除外),連接PM,設線段PM的長為l,點P的橫坐標為x,請求出l2與x之間的 函數(shù)關系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點P,使以A、M、P為頂點的三角形是等腰三精英家教網(wǎng)角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+c與x軸交于A、B兩點,與y軸交于C點,直線y=
12
x-2經(jīng)過點B及OC中點E.求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y=-
1
2
x+1
分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標為
 
;點D的坐標為
 
.并求出拋物線的解析式;
(2)若正方形以每秒
5
個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設正方形落在x軸下方部分的面積為S,求S關于滑行時間t的函數(shù)關系式,并寫出相應自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y=-
12
x+1
交坐標軸于A、B點,以線段AB為邊向上作正方形ABCD,過點A、D、C的拋物線與直線的另一個交點為E.
(1)求點C、D的坐標
(2)求拋物線的解析式
(3)若拋物線與正方形沿射線AB下滑,直至點C落在x軸上時停止,求拋物線上C、E兩點間的拋物線所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:022

已知拋物線+12x-19的頂點的橫坐標是3,則a=________.

查看答案和解析>>

同步練習冊答案