【題目】1)閱讀理解

我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系.如果兩條數(shù)軸不垂直,而是相交成任意的角ωω180°ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系.如圖1,經(jīng)過平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PMPNx軸和y軸于M、N,點(diǎn)MNx軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo).

如圖2,ω=30°,直角三角形的頂點(diǎn)A在坐標(biāo)原點(diǎn)O,點(diǎn)BC分別在x軸和y軸上,AB=,則點(diǎn)B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為B ,C

2)嘗試應(yīng)用

如圖3ω=45°,O為坐標(biāo)原點(diǎn),邊長為1的正方形OABC一邊OAx軸上,設(shè)點(diǎn)Gx,y)在經(jīng)過A、C兩點(diǎn)的直線上,求yx之間滿足的關(guān)系式.

3)深入探究

如圖4,ω=60°O為坐標(biāo)原點(diǎn),M2,2),圓M的半徑為.有一個(gè)內(nèi)角為60°的菱形,菱形的一邊在x軸上,另有兩邊所在直線恰好與圓M相切,求此菱形的邊長.

【答案】1)(,0),C0,2); 2y=-x+.(3123.

【解析】

1)根據(jù)平面斜坐標(biāo)系中點(diǎn)的坐標(biāo)的定義計(jì)算即可;

2)求出A、C兩點(diǎn)坐標(biāo),利用待定系數(shù)法即可解決問題;

3)分三種情形①如圖4-1中,當(dāng)菱形ABCD的邊ADBC與⊙M相切于E、F時(shí);②如圖4-2中,當(dāng)菱形ABCD的邊AD、DC與⊙M相切于E、F時(shí),連接EM、MF;③如圖4-3中,當(dāng)菱形ABCD的邊AD、DC與⊙M相切于E、F時(shí),連接EMDM、MF.分別求解即可解決問題;

1)如圖2中,

B,0),C0,2),

故答案為(,0),C0,2);

2)如圖3中,由題意C-1,),A1,0),

設(shè)直線AC是解析式為y=kx+b,

則有:,

解得

y=-x+

3)①如圖4-1中,當(dāng)菱形ABCD的邊AD、BC與⊙M相切于E、F時(shí),作BHADH

∵四邊形BHEF是矩形,

BH=EF=,

RtABH中,∵∠BAH=60°,

AB=BH÷cos60°=2

②如圖4-2中,當(dāng)菱形ABCD的邊AD、DC與⊙M相切于E、F時(shí),連接EMMF

易知AE=,DE=,所以AD=AE-DE=1,

AB=AD=1

③如圖4-3中,當(dāng)菱形ABCD的邊AD、DC與⊙M相切于E、F時(shí),連接EM、DM、MF

易知AE=,DE=,所以AD=AB=AE+DE=3

綜上所述,菱形的邊長為123

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

(1)求共抽取了多少名學(xué)生的征文;

(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)在扇形統(tǒng)計(jì)圖中,選擇愛國主題所對(duì)應(yīng)的圓心角是多少;

(4)如果該校九年級(jí)共有1200名學(xué)生,請(qǐng)估計(jì)選擇以友善為主題的九年級(jí)學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x1,其圖象的一部分如圖所示,下列說法中①abc0;②2a+b0;③當(dāng)﹣1x3時(shí),y0;④2c3b0.正確的結(jié)論有( 。

A. ①②B. ②③④C. ①③D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線,交CE的延長線于點(diǎn)F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在矩形ABCD中,AB3BC4,點(diǎn)E是邊AB上一點(diǎn),且AE2EB,點(diǎn)P是邊BC上一動(dòng)點(diǎn),連接EP,過點(diǎn)PPQPE交射線CD于點(diǎn)Q.若點(diǎn)C關(guān)于直線PQ的對(duì)稱點(diǎn)恰好落在邊AD上,則BP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與y軸交于點(diǎn)A0,8),與x軸交于BC兩點(diǎn),其中點(diǎn)C的坐標(biāo)為(4,0).點(diǎn)Pmn)為該二次函數(shù)在第二象限內(nèi)圖象上的動(dòng)點(diǎn),點(diǎn)D的坐標(biāo)為(0,4),連接BD

1)求該二次函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

2)連接OP,過點(diǎn)PPQx軸于點(diǎn)Q,當(dāng)以O、PQ為頂點(diǎn)的三角形與△OBD相似時(shí),求m的值;

3)連接BP,以BD、BP為鄰邊作BDEP,直線PEx軸于點(diǎn)T.當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣9,﹣6,﹣3,﹣12,36,8,11這九個(gè)數(shù)中,任取一個(gè)作為a值,能夠使關(guān)于x的一元二次方程x2+ax+90有兩個(gè)不相等的實(shí)數(shù)根的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+1x2+2bx+a+1)=0有兩個(gè)相等的實(shí)數(shù)根,則下面說法正確的是( 。

A. 1一定不是方程x2+bx+a0的根B. 0一定不是方程x2+bx+a0的根

C. 1可能是方程x2+bx+a0的根D. 1和﹣1都是方程x2+bx+a0的根

查看答案和解析>>

同步練習(xí)冊(cè)答案