【題目】如圖1,點 為直線 上一點,過點 作射線 ,使 ,將一直角三角板的直角頂點放在點 處,一邊 在射線 上,另一邊 在直線 的下方.

(1)將圖1中的三角板繞點 逆時針旋轉(zhuǎn)至圖 ,使一邊 的內(nèi)部,且恰好平分 ,問:此時直線 是否平分 ?請直接寫出結(jié)論:直線 (平分或不平分) .
(2)將圖1中的三角板繞點 以每秒 的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第 秒時,直線 恰好平分銳角 ,則 的值為.(直接寫出結(jié)果)
(3)將圖1中的三角板繞點 順時針旋轉(zhuǎn),請?zhí)骄浚寒? 始終在 的內(nèi)部時(如圖3), 的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請舉例說明.

【答案】
(1) 平分
(2) 或49
(3)解:不變,設

, ,


【解析】(1)直線 平分 ;(2)

(1)根據(jù)圖形得到直線ON平分∠AOC ;(2)由三角板繞點 O 以每秒 5 ° 的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第 t 秒時,直線ON恰好平分銳角∠AOC,求出t的值;(3)根據(jù)題意得到∠AON=50°y,∠AOM∠NOC=xy=40°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)5,2,456的中位數(shù)是( )

A. 2B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑作半圓O,點C為半圓上與A,B不重合的一動點,過點C作CDAB于點D,點E與點D關于BC對稱,BE與半圓交于點F,連CE.

(1)判斷CE與半圓O的位置關系,并給予證明.

(2)點C在運動時,四邊形OCFB的形狀可變?yōu)榱庑螁?若可以,猜想此時AOC的大小,并證明你的結(jié)論;若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點,
(1)如圖,E,F(xiàn)分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F(xiàn)分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖所示的方式放置.點A1 , A2 , A3 , …和點C1 , C2 , C3 , …分別在直線y=kx+b(k>0)和x軸上,已知點B1(1,1),B2(3,2),則Bn的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a+b3,a2+b273ab,則ab等于( 。

A.2B.1C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)共40個,分為6組,第1到第四組的頻數(shù)分別為10,5,7,6,第5組的頻率為0.1,則第6組的頻數(shù)為

A、4 B、10 C、6 D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1),∠α=50°,則∠1+∠2=°
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:
(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.
(4)若點P運動到△ABC形外,如圖(4),則∠α、∠1、∠2之間的關系為:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】股民小張五買某公司股票1000股,每股14.80元,表為第二周星期一至星期五每日該股票漲跌情況

(1)星期三收盤時,每股是多少元?
(2)本周內(nèi)最高價是每股多少元?最低價是每股多少元?
(3)已知小張買進股票時付了成交額0.15%的手續(xù)費,賣出時付了成交額0.15%的手續(xù)費和成交額0.1%的交易稅,如果小張在星期五收盤前將全部股票賣出,那么他的收益情況如何?

查看答案和解析>>

同步練習冊答案