我們知道,如果ab>0,那么a、b兩個(gè)數(shù)一定是同號(hào)的,即兩個(gè)數(shù)都是正數(shù)或兩個(gè)數(shù)都是負(fù)數(shù);如果三個(gè)數(shù)滿足abc>0,那么a、b、c三個(gè)數(shù)都是正數(shù)或其中有兩個(gè)數(shù)是負(fù)數(shù)另一個(gè)數(shù)是正數(shù)….依次類推,當(dāng)a1、a2、…、an滿足什么條件時(shí),a1a2an>0(n個(gè)數(shù)的積為正數(shù))?

答案:
解析:

解:當(dāng)這n個(gè)數(shù)均為正數(shù)或這n個(gè)數(shù)中的負(fù)因數(shù)的個(gè)數(shù)為偶數(shù)時(shí),a1a2an>0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道:如果兩個(gè)三角形不僅是相似三角形,而且每對(duì)對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這兩個(gè)三角形叫做位似三角形,它們的相似比又稱為位似比,這個(gè)點(diǎn)叫做位似中心.利用三角形的位似可以將一個(gè)三角形縮小或放大.
(1)選擇:如圖1,點(diǎn)O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點(diǎn),則△P′Q′R′與△PQR是位似三角形.此時(shí),△P′Q′R′與△PQR的位似比、位似中心分別為
 
;
(A)2、點(diǎn)P,(B)
1
2
、點(diǎn)P,( C)2、點(diǎn)O,(D)
1
2
、點(diǎn)O;
(2)如圖2,用下面的方法可以畫△AOB的內(nèi)接等邊三角形.閱讀后證明相應(yīng)問題精英家教網(wǎng)
畫法:
①在△AOB內(nèi)畫等邊三角形CDE,使點(diǎn)C在OA上,點(diǎn)D在OB上;
②連接OE并延長(zhǎng),交AB于點(diǎn)E′,過(guò)點(diǎn)E′作E′C′∥EC,交OA于點(diǎn)C′,作E′D′∥ED,交OB于點(diǎn)D′;
③連接C′D′,則△C′D′E′是△AOB的內(nèi)接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,∠C=90°,學(xué)習(xí)等邊三角形時(shí),我們知道,如果∠A=30°,那么AB=2BC
由此我們猜想,如果AB=2BC,那么∠A=30°,請(qǐng)你利用軸對(duì)稱變換,證明這個(gè)結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•南京)我們知道:如果兩個(gè)三角形不僅是相似三角形,而且每對(duì)對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這兩個(gè)三角形叫做位似三角形,它們的相似比又稱為位似比,這個(gè)點(diǎn)叫做位似中心.利用三角形的位似可以將一個(gè)三角形縮小或放大.
(1)選擇:如圖1,點(diǎn)O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點(diǎn),則△P′Q′R′與△PQR是位似三角形.此時(shí),△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點(diǎn)P,(B)、點(diǎn)P,( C)2、點(diǎn)O,(D)、點(diǎn)O;
(2)如圖2,用下面的方法可以畫△AOB的內(nèi)接等邊三角形.閱讀后證明相應(yīng)問題.
畫法:
①在△AOB內(nèi)畫等邊三角形CDE,使點(diǎn)C在OA上,點(diǎn)D在OB上;
②連接OE并延長(zhǎng),交AB于點(diǎn)E′,過(guò)點(diǎn)E′作E′C′∥EC,交OA于點(diǎn)C′,作E′D′∥ED,交OB于點(diǎn)D′;
③連接C′D′,則△C′D′E′是△AOB的內(nèi)接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省南京市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•南京)我們知道:如果兩個(gè)三角形不僅是相似三角形,而且每對(duì)對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這兩個(gè)三角形叫做位似三角形,它們的相似比又稱為位似比,這個(gè)點(diǎn)叫做位似中心.利用三角形的位似可以將一個(gè)三角形縮小或放大.
(1)選擇:如圖1,點(diǎn)O是等邊三角形PQR的中心,P′、Q′、R′分別是OP、OQ、OR的中點(diǎn),則△P′Q′R′與△PQR是位似三角形.此時(shí),△P′Q′R′與△PQR的位似比、位似中心分別為______;
(A)2、點(diǎn)P,(B)、點(diǎn)P,( C)2、點(diǎn)O,(D)、點(diǎn)O;
(2)如圖2,用下面的方法可以畫△AOB的內(nèi)接等邊三角形.閱讀后證明相應(yīng)問題.
畫法:
①在△AOB內(nèi)畫等邊三角形CDE,使點(diǎn)C在OA上,點(diǎn)D在OB上;
②連接OE并延長(zhǎng),交AB于點(diǎn)E′,過(guò)點(diǎn)E′作E′C′∥EC,交OA于點(diǎn)C′,作E′D′∥ED,交OB于點(diǎn)D′;
③連接C′D′,則△C′D′E′是△AOB的內(nèi)接三角形.
求證:△C′D′E′是等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案