設α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當m為何值時,α22有最小值?并求出這個最小值.
分析:由已知中α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,則首先應判斷△≥0,即方程有兩個實數(shù)根,然后根據(jù)韋達定理(一元二次方程根與系數(shù))的關系,給出α22的表達式,然后根據(jù)二次函數(shù)的性質(zhì),即可得到出m為何值時,α22有最小值,進而得到這個最小值.
解答:解:若α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根
則△=16m2-16(m+2)≥0,即m≤-1,或m≥2
則α+β=m,α×β=
m+2
4
,
則α22=(α+β)2-2αβ=m2-2×
m+2
4
=m2-
1
2
m-1=(m-
1
4
2-
17
16

∴當m=-1時,α22有最小值,最小值是
1
2
點評:本題考查的知識點是一元二次方程根的分布與系數(shù)的關系,一次函數(shù)的性質(zhì),其中易忽略,方程有兩個根時△≥0的限制,直接利用韋達定理和二次函數(shù)的性質(zhì)求解,而錯解為當x=
1
4
時,最小值為-
17
16
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料:∵ax2+bx+c=0(a≠0)的根為x1=
-b+
b2-4ac
2a
.,x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

綜上所述得,設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
b
a
x1x2=
c
a

請利用這一結論解決下列問題:
(1)若矩形的長和寬是方程4x2-13x+3=0的兩個根,則矩形的周長為
13
2
13
2
,面積為
3
4
3
4

(2)若2+
3
是x2-4x+c=0的一個根,求方程的另一個根及c的值.
(3)直角三角形的斜邊長是5,另兩條直角邊的長分別是x的方程:x2+(2m-1)x+m2+3=0的解,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:022

(1)方程x224x兩根之和是_________,兩根之積是_________

(2)如果一元二次方程8x2-(m1xm70有一個根是0,則m_________;

(3)已知方程x2mxn0兩根互為相反數(shù),則m__________0,n__________0;

(4)已知方程x24xk20兩根之積是–3,則k_________;

(5)已知方程9x22mx80兩根之和等于2,則m_________;

(6)已知?ot匠?/span>x23xm0的一個根是另一個根的2倍,則m_________;

(7)若方程x25xm0兩根之差的平方為16,則m_________;

(8)若兩數(shù)的和為-5,積為-6,則此兩數(shù)為__________________;

(9)若關于x的二次三項式x2ax2a3是完全平方式,則a的值為________________

(10)若方程3x2pxq0的兩根的倒數(shù)之和是-2,且3p2q=-8,則p、q的值為_____________;

(11)已知一個一元二次方程的兩根分別比方程x22x30的兩根大1,則此方程為______________

(12)x1、x2是方程x213xm0的兩個根,且x14x22,則m__________________

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

設α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當m為何值時,α22有最小值?并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年浙江省杭州市蕭山九中新高一數(shù)學暑假作業(yè)4(解析版) 題型:解答題

設α,β是方程4x2-4mx+m+2=0,(x∈R)的兩個實根,當m為何值時,α22有最小值?并求出這個最小值.

查看答案和解析>>

同步練習冊答案