若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的兩個(gè)根,則實(shí)數(shù)x1,x2,a,b的大小關(guān)系為(    )
A.x1<x2<a<bB.x1<a<x2<bC.x1<a<b<x2D.a(chǎn)<x1<b<x2
C.

試題分析:因?yàn)閤1和x2為方程的兩根,所以滿足方程(x-a)(x-b)= 1,再由已知條件x1<x2、a<b結(jié)合圖象,可得到x1,x2,a,b的大小關(guān)系.
解答:解:用作圖法比較簡單,首先作出(x-a)(x-b)=0圖象,(開口向上的,與x軸有兩個(gè)交點(diǎn)),

再向下平移1個(gè)單位,就是(x-m)(x-n)=1,這時(shí)與x軸的交點(diǎn)就是x1,x2,畫在同一坐標(biāo)系下,
很容易發(fā)現(xiàn):x1<a<b<x2
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點(diǎn)坐標(biāo)為(m,2m-1),即x=m③,y=2m-1④.
當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1;
根據(jù)上述閱讀材料提供的方法,確定點(diǎn)(-2m, m-1)滿足的函數(shù)關(guān)系式為_______.
(2)根據(jù)閱讀材料提供的方法,確定拋物線頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,將拋物線繞著它與y軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式為                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長最小時(shí),點(diǎn)K的坐標(biāo)為   
(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在PQ∥OC?若存在,請求出此時(shí)t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看做一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?(3分)
(3)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量) (3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以點(diǎn)A(,0)為圓心,以為半徑圓與x軸相交于點(diǎn)B,C,與y軸相交于點(diǎn)D,E.

(1)若拋物線經(jīng)過點(diǎn)C,D兩點(diǎn),求拋物線的解析式,并判斷點(diǎn)B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上有一點(diǎn)P,使得△PBD的周長最小,求點(diǎn)P的坐標(biāo);
(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點(diǎn),在拋物線上是否存在這樣的點(diǎn)M,使得四邊形BCQM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線先向上平移3個(gè)單位,再向左平移2個(gè)單位后得到的拋物線解析式為( )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=與x軸交于點(diǎn)A、B,頂點(diǎn)為C,則△ABC的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)為(﹣2,0),則拋物線的對稱軸為(      )
A.直線x=1B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣4

查看答案和解析>>

同步練習(xí)冊答案