精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,DE⊥BC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DG⊥AB,垂足為點F,交⊙O于點G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結果保留π)

【答案】分析:(1)連接BD,OD,求出OD∥BC,推出OD⊥DE,根據切線判定推出即可;
(2)求出∠BOD=∠GOB,求出∠BOD的度數,根據弧長公式求出即可.
解答:(1)證明:連接BD、OD,
∵AB是⊙O直徑,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴AD=DC,
∵AO=OB,
∴DO∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD為半徑,
∴DE是⊙O切線;

(2)解:∵DG⊥AB,OB過圓心O,
∴弧BG=弧BD,
∵∠A=35°,
∴∠BOD=2∠A=70°,
∴∠BOG=∠BOD=70°,
∴∠GOD=140°,
∴劣弧DG的長是=π.
點評:本題考查了弧長公式,切線的判定,平行線性質和判定,圓周角定理,等腰三角形的性質和判定,三角形的中位線等知識點的應用,主要考查學生綜合運用定理進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案