□ABCD面積為8,以AB、BC為邊向外作正方形ABEF、BCHG,則     ▲   

 

4

解析:連接BD,∵正方形ABEF、BCHG∴BG=BC,BE=AB=DC∵□ABCD∴∠DCB=180°-∠ABC

∵正方形ABEF、BCHG∴∠EBA=∠GBC=90º∴∠EBG=180°-∠ABC∴∠DCB=∠EBG∴△BCD≌△BEG∵.□ABCD面積為8∴=4∴4.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

長方形ABCD面積為12,周長為14,則對(duì)角線AC的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、已知:如圖,平行四邊形ABCD面積為12,AB邊上的高DE=3,則DC的長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD面積為S,E、F為AB的三等分點(diǎn),M、N為DC的三等分點(diǎn).試用S的代數(shù)式表示四邊形EFNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD中,AC=4,則正方形ABCD面積為(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在平行四邊形AOBC中,AO=5,則點(diǎn)A坐標(biāo)
(-5,0)
,點(diǎn)C坐標(biāo)
(-7,4)
,平行四邊形ABCD面積為
20

查看答案和解析>>

同步練習(xí)冊(cè)答案