如圖,已知點(diǎn)A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線(xiàn)與過(guò)點(diǎn)A的直線(xiàn)交于點(diǎn)B,OC=BC,AC=數(shù)學(xué)公式OB.則AB________(填“是”或“不是”)⊙O的切線(xiàn).


分析:根據(jù)已知若能證明∠OAB=90°,則AB是⊙O的切線(xiàn),否則不是.根據(jù)題意可知OA=OC=AC=OB,可得△OAC是等邊三角形與△ABC是等腰三角形,則可求得角的度數(shù),得解.
解答:∵OC=BC,AC=OB,
∴AC=OA=OC,
∴∠OAC=60°;
∴∠OCA=2∠CBA=60°,
∴∠CAB=30°,
∴∠OAB=60°+30°=90°;
∴AB是⊙O的切線(xiàn).
點(diǎn)評(píng):本題考查了切線(xiàn)的判定與特殊三角形的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A是函數(shù)y=x與y=
4
x
的圖象在第一象限內(nèi)的交點(diǎn),點(diǎn)B在x軸負(fù)半軸上,且OA=OB,則△AOB的面積為( 。
A、2
B、
2
C、2
2
D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,已知點(diǎn)C是AB上一點(diǎn),△ACM、△CBN都是等邊三角形.
(1)說(shuō)明AN=MB;
(2)將△ACM繞點(diǎn)C按逆時(shí)針旋轉(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖畫(huà)出符合要求的圖形;
(3)在(2)所得到的圖形中,結(jié)論“AN=BM”是否成立?若成立,請(qǐng)說(shuō)明理由;若不成立,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知點(diǎn)C是線(xiàn)段AB上的點(diǎn),△ACD與△BCE都是正三角形,F(xiàn)、G、精英家教網(wǎng)M、N分別是線(xiàn)段AC、CE、CD、CB的中點(diǎn),
求證:FG=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)E是矩形ABCD的邊AB上一點(diǎn),且EF⊥AC,EG⊥BD,AB=4cm,AD=3cm,則EF+EG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)C是線(xiàn)段AD的中點(diǎn),AC=15cm,BC=22cm,分別求線(xiàn)段AD和BD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案