解:(1)∵等腰△ABD和△ACE的頂角∠BAD=∠CAE,
∴AB=AD,AE=AC,∠BAE=∠DAC,
在△ABE和△DAC中,
,
∵△ABE≌△ACD(SAS),
∴∠BEA=∠ACD,
∴∠CFE=∠BAD=90゜,
∴∠FBC+∠FCB=90°,
∵BA,CA分別平分∠FBC和∠FCB,
∴∠ABC+∠ACB=45゜,
∵∠DAE=360°-∠BAD-∠CAE-∠BAC=180°-∠BAC,∠BAC=180°-(∠ABC+∠ACB),
∴∠DAE=∠ABC+∠ACB=45゜.
故答案為:45°;
(2)∵等腰△ABD和△ACE的頂角∠BAD=∠CAE,
∴AB=AD,AE=AC,∠BAE=∠DAC,
在△ABE和△DAC中,
,
∵△ABE≌△ACD(SAS),
∴∠BEA=∠ACD,
∴∠CFE=∠BAD=60゜,
∴∠FBC+∠FCB=60°,
∵BA,CA分別平分∠FBC和∠FCB,
∴∠ABC+∠ACB=30゜,
∵∠DAE=360°-∠BAD-∠CAE-∠BAC=240°-∠BAC,∠BAC=180°-(∠ABC+∠ACB)=150°,
∴∠DAE=90°.
故答案為:90°;
(3)∠DAE=
α-90°.
證明:∵等腰△ABD和△ACE的頂角∠BAD=∠CAE,
∴AB=AD,AE=AC,∠BAE=∠DAC,
在△ABE和△DAC中,
,
∵△ABE≌△ACD(SAS),
∴∠BEA=∠ACD,
∴∠CFE=∠BAD=180°-∠DFE=180°-α,
∴∠FBC+∠FCB=∠EFC=180°-α,
∵BA,CA分別平分∠FBC和∠FCB,
∴∠ABC+∠ACB=
(∠FBC+∠FCB)=90゜-
α,
∴∠BAC=180°-(∠ABC+∠ACB)=90°+
α,
∵∠DAE=360°-∠BAD-∠CAE-∠BAC=
α-90°.
分析:(1)由等腰△ABD和△ACE的頂角∠BAD=∠CAE,可證得△ABE≌△ACD,則可得∠BEA=∠ACD=∠CFE=90゜,繼而可得∠ABC+∠ACB=45゜,則可求得∠DAE=45゜;
(2)由等腰△ABD和△ACE的頂角∠BAD=∠CAE,可證得△ABE≌△ACD,則可得∠BEA=∠ACD=∠CFE=60゜,繼而可得∠ABC+∠ACB=30゜,則可求得∠DAE=60゜;
(3)由等腰△ABD和△ACE的頂角∠BAD=∠CAE,可證得△ABE≌△ACD,則可得∠BEA=∠ACD=∠CFE=(180-α)゜,繼而可得∠ABC+∠ACB=90゜-
α,繼而求得答案.
點評:此題考查了全等三角形的判定與性質(zhì)、角平分線的定義以及三角形外角的性質(zhì).此題難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.