解答:(1)∠1=∠2
證明:∵∠APC=∠ABC+∠1,又∠APC=∠APE+∠2,
∴∠ABC+∠1=∠APE+∠2,
∵∠ABC=α=∠APE,∴∠1=∠2
(2)會改變,當(dāng)點(diǎn)P在BC延長線上時,即x>5時
∠1與∠2的數(shù)量關(guān)系不同于(1)的數(shù)量關(guān)系.
解:∵∠APE=α=∠ABC,∴∠APB=α-∠2,-------------------(1分)
∵∠ABC+∠BAP+∠APB=180°,∴α+∠1+α-∠2=180°,----(1分)
∴∠1-∠2=180°-2α.-------------------------------------------------(1分)
(3)①當(dāng)點(diǎn)P在線段BC上時,
∵∠1=∠2,∠B=∠C,
∴△ABP∽△PCE,-------------------------------------------------------(1分)
∴
=,------------------------------------------------------------(1分)
即
=,∴
y=x-x2.------------------------------------(2分)
②當(dāng)點(diǎn)P在線段BC的延長線上時,
可得△EPC∽△EGP,∴EP
2=EC•EG--------------------------(1分)
作AM∥CD.
∵AB=3,cosα=
,
∴BM=2.
∴
GC=(x-5)作EK⊥BP,由
cosα=得
CK=y,KE=y,∴
KP=x-5-y∴
EP2=(y)2+(x-5-y)2,
于是
y(y+)=(y)2+(x-5-y)2即
y2+(x-5)y=y2+(x-5)2-(x-5)y+y2亦即
y=-----------------------------------------------(2分)