精英家教網 > 初中數學 > 題目詳情
如圖,已知:D、E分別是△ABC的AB、AC邊上的點,且DE不與BC平行,能夠判定△ABC∽△AED的條件是( )

A.
B.
C.
D.
【答案】分析:欲證△ABC∽△AED,通過觀察發(fā)現(xiàn)兩個三角形已經具備一組角對應相等,即∠A=∠A,此時,再求夾此對應角的兩邊對應成比例即可.
解答:解:∵∠A=∠A,
時,△ADE∽△ABC.
故選D.
點評:本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊成比例或對應角相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知:D、E分別是△ABC的AB、AC邊上的點,且DE不與BC平行,能夠判定△ABC∽△AED的條件是(  )
A、
AB
AC
=
AD
AE
B、
AB
AE
=
BC
ED
C、
AC
AD
=
BC
ED
D、
AB
AE
=
AC
AD

查看答案和解析>>

科目:初中數學 來源: 題型:

24、如圖,已知,D、E分別是△ABC的邊AB、AC上的點,DE交BC的延長線于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

21、如圖,已知:D,E分別是△ABC的AB,AC邊上的點,且△ABC∽△ADE,AD:DB=1:3,DE=2,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:D、E分別是△ABC的AB、AC邊上一點,DE∥BC,若AD:AB=1:2,則S△ADE:S四邊形BDEC=
1:3
1:3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知:A、B分別是x軸上位于原點左、右兩側的點,點P(2,p)在第一象限,直線PA交y軸于點C(0,2),直線PB交y軸于點D,此時,S△AOP=6.
(1)求P的值;
(2)若S△BOP=S△DOP,求直線BD的函數解析式.

查看答案和解析>>

同步練習冊答案