已知關(guān)于x的一元二次方程
(1)求證:無(wú)論m取任何實(shí)數(shù),方程都有兩個(gè)實(shí)數(shù)根;
(2)當(dāng)m<3時(shí),關(guān)于x的二次函數(shù)的圖象與x軸交于A、B 兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且2AB=3OC,求m的值;
(3)在(2)的條件下,過(guò)點(diǎn)C作直線l∥x軸,將二次函數(shù)圖象在y軸左側(cè)的部分沿直線l翻折,二次函數(shù)圖象的其余部分保持不變,得到一個(gè)新的圖象,記為G.請(qǐng)你結(jié)合圖象回答:當(dāng)直線與圖象G只有一個(gè)公共點(diǎn)時(shí),b的取值范圍.

【答案】分析:(1)運(yùn)用根的判別式就可以求出△的值就可以得出結(jié)論;
(2)先當(dāng)x=0或y=0是分別表示出拋物線與x軸和y軸的交點(diǎn)坐標(biāo),表示出AB、OC的值,由2AB=3OC建立方程即可求出m的值;
(3)把(2)m的值代入拋物線的解析式就可以求出拋物線的解析式和C點(diǎn)的坐標(biāo),當(dāng)直線經(jīng)過(guò)點(diǎn)C時(shí)就可以求出b的值,由直線與拋物線只有一個(gè)公共點(diǎn)建立方程,根據(jù)△=0就可以求出b的值,再根據(jù)圖象就可以得出結(jié)論.
解答:解:(1)根據(jù)題意,得
△=(m-2)2-4××(2m-6)
=(m-4)2,
∵無(wú)論m為任何數(shù)時(shí),都有(m-4)2≥0,即△≥0.
∴無(wú)論m取任何實(shí)數(shù),方程都有兩個(gè)實(shí)數(shù)根;
(2)由題意,得
當(dāng)y=0時(shí),則,
解得:x1=6-2m,x2=-2,
∵m<3,點(diǎn)A在點(diǎn)B的左側(cè),
∴A(-2,0),B(-2m+6,0),
∴OA=2,OB=-2m+6.
當(dāng)x=0時(shí),y=2m-6,
∴C(0,2m-6),
∴OC=-(2m-6)=-2m+6.
∵2AB=3OC,
∴2(2-2m+6)=3(-2m+6),
解得:m=1;
(3)如圖,當(dāng)m=1時(shí),拋物線的解析式為y=x2-x-4,
點(diǎn)C的坐標(biāo)為(0,-4).
當(dāng)直線y=x+b經(jīng)過(guò)點(diǎn)C時(shí),可得b=-4,
當(dāng)直線y=x+b(b<-4)與函數(shù)y=x2-x-4(x>0)的圖象只有一個(gè)公共點(diǎn)時(shí),得
x+b═x2-x-4.
整理得:3x2-8x-6b-24=0,
∴△=(-8)2-4×3×(-6b-24)=0,
解得:b=-
結(jié)合圖象可知,符合題意的b的取值范圍為b>-4或b<-
點(diǎn)評(píng):本題是一道一次函數(shù)與二次函數(shù)的綜合試題,考查了一元二次方程根的判別式的運(yùn)用,二次函數(shù)與坐標(biāo)軸的交點(diǎn)坐標(biāo)的運(yùn)用,軸對(duì)稱的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)函數(shù)之間的關(guān)系建立方程靈活運(yùn)用根的判別式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊(cè)答案