如圖,點P是等腰△ABC的底邊BC上的點,以AP為腰在AP的兩側(cè)分別作等腰△AFP和等腰△AEP,且∠APF=∠APE=∠B,PF交AB于點M,PE交AC于點N,連接MN.
求證:MNBC.
證明:∵△ABC、△AFP和△AEP是等腰三角形,
∴AF=AP,∠F=∠APN,∠FAM=∠PAN,
在△AFM和△APN中,
∠F=∠APN
AF=AP
∠FAM=∠PAN

∴△AFM≌△APN(ASA),
∴AM=AN.
∴∠AMN=∠B,
∴MNBC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系xOy中,A(0,2),B(0,6),動點C在直線y=x上.若以A、B、C三點為頂點的三角形是等腰三角形,則點C的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:D、E為BC邊上的點,AD=AE,BD=EC.求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,AB=AC,BD是∠ABC的平分線,若∠ADB=93°,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AD為△ABC的高,∠B=2∠C,BD=5,BC=20.求AB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段______的長度即為△ABC的費馬距離.

(3)知識應用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設的輸水管總長度最小,求輸水管總長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖所示,等邊三角形ABC的邊長為2,點P和Q分別從A和C兩點同時出發(fā),做勻速運動,且它們的速度相同.點P沿射線AB運動,點Q沿邊BC的延長線運動,設PQ與直線AC相交于點D,作PE⊥AC于E,當P和Q運動時,線段DE的長是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

邊長為4的正三角形的高為(  )
A.2B.4C.
3
D.2
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

等邊三角形ABC的邊長是4
3
,三角形內(nèi)有一點O,且OA=OB=OC,則OA=______.

查看答案和解析>>

同步練習冊答案