(2010•安順)如圖,⊙O是△ABC的外接圓,且AB=AC,點D在弧BC上運動,過點D作DE∥BC,DE交AB的延長線于點E,連接AD、BD.
(1)求證:∠ADB=∠E;
(2)當點D運動到什么位置時,DE是⊙O的切線?請說明理由.
(3)當AB=5,BC=6時,求⊙O的半徑.

【答案】分析:(1)根據(jù)圓周角定理及平行線的性質(zhì)不難求解;
(2)要使DE是圓的切線,那么D就是求點,AD⊥DE,又根據(jù)AD過圓心O,BC∥ED,根據(jù)垂徑定理可得出D應是弧BC的中點.
(3)可通過構(gòu)建直角三角形來求解,連接BO、AO,并延長AO交BC于點F,根據(jù)垂徑定理BF=CF,AF=R+OF,那么直角三角形OBF中可以用R表示出OF,OB,然后根據(jù)勾股定理求出半徑的長.
解答:(1)證明:∵在△ABC中,AB=AC,
∴∠ABC=∠C.
∵DE∥BC,
∴∠ABC=∠E,
∴∠E=∠C,
又∵∠ADB=∠C,
∴∠ADB=∠E;

(2)解:當點D是弧BC的中點時,DE是⊙O的切線.
理由是:∵當點D是弧BC的中點時,AB=AC,
∴AD是直徑,
∴AD⊥BC,
∴AD過圓心O,
又∵DE∥BC,
∴AD⊥ED.
∴DE是⊙O的切線;

(3)解:過點A作AF⊥BC于F,連接BO,
則點F是BC的中點,BF=BC=3,
連接OF,則OF⊥BC(垂徑定理),
∴A、O、F三點共線,
∵AB=5,
∴AF=4;
設⊙O的半徑為r,在Rt△OBF中,OF=4-r,OB=r,BF=3,
∴r2=32+(4-r)2
解得r=,
∴⊙O的半徑是
點評:本題主要考查了圓周角定理,切線的判定,平行線的性質(zhì),垂徑定理等知識點,正確運用好圓心角,弧,弦的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年貴州省安順市中考數(shù)學試卷(解析版) 題型:解答題

(2010•安順)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A(-3,1),B(2,n)兩點,直線AB分交x軸、y軸于D,C兩點.
(1)求上述反比例函數(shù)和一次函數(shù)的解析式;
(2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省達州市中考數(shù)學模擬試卷(解析版) 題型:解答題

(2010•安順)如圖,拋物線y=x2+3與x軸交于點A,點B,與直線y=x+b相交于點B,點C,直線y=x+b與y軸交于點E.
(1)寫出直線BC的解析式.
(2)求△ABC的面積.
(3)若點M在線段AB上以每秒1個單位長度的速度從A向B運動(不與A,B重合),同時,點N在射線BC上以每秒2個單位長度的速度從B向C運動.設運動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年山東省泰安市中考數(shù)學模擬試卷(2)(解析版) 題型:填空題

(2010•安順)如圖是某工程隊在“村村通”工程中,修筑的公路長度y(米)與時間x(天)之間的關系圖象.根據(jù)圖象提供的信息,可知該公路的長度是    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市宣武區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•安順)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A(-3,1),B(2,n)兩點,直線AB分交x軸、y軸于D,C兩點.
(1)求上述反比例函數(shù)和一次函數(shù)的解析式;
(2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省煙臺市中考數(shù)學試卷(解析版) 題型:填空題

(2010•安順)如圖是某工程隊在“村村通”工程中,修筑的公路長度y(米)與時間x(天)之間的關系圖象.根據(jù)圖象提供的信息,可知該公路的長度是    米.

查看答案和解析>>

同步練習冊答案