【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示
(1)根據(jù)方程的根與函數(shù)圖象之間的關(guān)系,將方程x2+x=1的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
(2)在同一直角坐標系中畫出一次函數(shù)y= x+ 的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數(shù)的值小于二次函數(shù)的值.
(3)如圖,點P是坐標平面上的一點,并在網(wǎng)格的格點上,請選擇一種適當?shù)钠揭品椒ǎ蛊揭坪蠖魏瘮?shù)圖象的頂點落在P點上,寫出平移后二次函數(shù)圖象的函數(shù)表達式,并判斷點P是否在函數(shù)y= x+ 的圖象上,請說明理由.
【答案】
(1)
解:∵令y=0得:x2+x=0,解得:x1=0,x2=﹣1,
∴拋物線與x軸的交點坐標為(0,0),(﹣1,0).
作直線y=1,交拋物線與A、B兩點,分別過A、B兩點,作AC⊥x軸,垂足為C,BD⊥x軸,垂足為D,點C和點D的橫坐標即為方程的根.
根據(jù)圖形可知方程的解為x1≈﹣1.6,x2≈0.6.
(2)
解:∵將x=0代入y= x+ 得y= ,將x=1代入得:y=2,
∴直線y= x+ 經(jīng)過點(0, ),(1,2).
直線y= x+ 的圖象如圖所示:
由函數(shù)圖象可知:當x<﹣1.5或x>1時,一次函數(shù)的值小于二次函數(shù)的值.
(3)
解:先向上平移 個單位,再向左平移 個單位,平移后的頂點坐標為P(﹣1,1).
平移后的表達式為y=(x+1)2+1,即y=x2+2x+2.
點P在y= x+ 的函數(shù)圖象上.
理由:∵把x=﹣1代入得y=1,
∴點P的坐標符合直線的解析式.
∴點P在直線y= x+ 的函數(shù)圖象上.
【解析】(1)令y=0求得拋物線與x的交點坐標,從而可確定出1個單位長度等于小正方形邊長的4倍,接下來作直線y=1,找出直線y=1與拋物線的交點,直線與拋物線的交點的橫坐標即可方程的解;(2)先求得直線上任意兩點的坐標,然后畫出過這兩點的直線即可得到直線y= x+ 的函數(shù)圖象,然后找出一次函數(shù)圖象位于直線下方部分x的取值范圍即可;(3)先依據(jù)拋物線的頂點坐標和點P的坐標,確定出拋物線移動的方向和距離,然后依據(jù)拋物線的頂點式寫出拋物線的解析式即可,將點P的坐標代入函數(shù)解析式,如果點P的坐標符合函數(shù)解析式,則點P在直線上,否則點P不在直線上.本題主要考查的是二次函數(shù)的綜合應用,
解答本題主要應用坐標軸上點的坐標特點、點的坐標與函數(shù)解析式的關(guān)系,函數(shù)與方程、不等式的關(guān)系,求得拋物線與x軸的交點坐標,確定出單位長度的大小以及數(shù)形結(jié)合思想的應用是解題的關(guān)鍵.
【考點精析】認真審題,首先需要了解拋物線與坐標軸的交點(一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.).
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩支清雪隊同時開始清理某路段積雪,一段時間后,乙隊被調(diào)往別處,甲隊又用了3小時完成了剩余的清雪任務,已知甲隊每小時的清雪量保持不變,乙隊每小時清雪50噸,甲、乙兩隊在此路段的清雪總量y(噸)與清雪時間x(時)之間的函數(shù)圖象如圖所示.
(1)乙隊調(diào)離時,甲、乙兩隊已完成的清雪總量為噸;
(2)求此次任務的清雪總量m;
(3)求乙隊調(diào)離后y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F(xiàn),DF與AC交于點M,DE與BC交于點N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點D旋轉(zhuǎn)的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.
(1)在圖中畫出以AB為底、面積為12的等腰△ABC,且點C在小正方形的頂點上;
(2)在圖中畫出平行四邊形ABDE,且點D和點E均在小正方形的頂點上,tan∠EAB= ,連接CD,請直接寫出線段CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點A,B在函數(shù)y= (x>0)的圖象上,點C,D分別在x軸,y軸的正半軸上,當k的值改變時,正方形ABCD的大小也隨之改變.
①當k=2時,正方形A′B′C′D′的邊長等于 .
②當變化的正方形ABCD與(1)中的正方形A′B′C′D′有重疊部分時,k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課前預習是學習數(shù)學的重要環(huán)節(jié),為了了解所教班級學生完成數(shù)學課前預習的具體情況,王老師對本班部分學生進行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)王老師一共調(diào)查了多少名同學?
(2)C類女生有名,D類男生有名,將上面條形統(tǒng)計圖補充完整;
(3)為了共同進步,王老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每次薪金如下:生產(chǎn)的零件不超過a件,則每件3元,超過a件,超過部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關(guān)系式,則下列結(jié)論錯誤的是( )
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)50件
D.若工人乙一天生產(chǎn)m(件),則他獲得薪金4m元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抓住文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不超過8 000元,那么該商店至多購進A種紀念品幾件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com