如圖,點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),則下列判斷錯(cuò)誤的是


  1. A.
    四邊形AEDF一定是平行四邊形
  2. B.
    若∠A=90°,則四邊形AEDF是矩形
  3. C.
    若AD平分∠A,則四邊形AEDF是正方形
  4. D.
    若AD⊥BC,則四邊形AEDF是菱形
C
分析:一組對(duì)邊平行且相等的四邊形是平行四邊形;有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線互相垂直的平行四邊形是菱形.
解答:A、∵點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),∴DE、DF為△ABC得中位線,
∴ED∥AC,且ED=AC=AF;同理DF∥AB,且DF=AB=AE,
∴四邊形AEDF一定是平行四邊形,正確.
B、若∠A=90°,則四邊形AEDF是矩形,正確;
C、若AD平分∠A,延長(zhǎng)AD到M,使DM=AD,連接CM,由于BD=CD,DM=AD,
∠ADB=∠CDB,(SAS)∴△ABD≌△MCD∴CM=AB,又∵∠DAB=∠CAD,
∠DAB=∠CMD,∴∠CMD=∠CAD,∴CA=CM=AB,因AD平分∠A
∴AD⊥BC,則△ABD≌△ACD;AB=AC,AE=AF,
結(jié)合(1)四邊形AEDF是菱形,因?yàn)椤螦不一定是直角
∴不能判定四邊形AEDF是正方形;
D、若AD⊥BC,則△ABD≌△ACD;AB=AC,AE=AF,結(jié)合(1)四邊形AEDF是菱形,正確.
故選C.
點(diǎn)評(píng):本題考查三角形中位線定理和平行四邊形、矩形、正方形、菱形的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點(diǎn),下列說(shuō)法中,錯(cuò)誤的是( 。
A、EF與AD互相平分
B、EF=
1
2
BC
C、AD平分∠BAC
D、△DEF∽△ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC(AB>AC)各邊的中點(diǎn),下列說(shuō)法中,錯(cuò)誤的是( 。
A、AD平分∠BAC
B、EF=
1
2
BC
C、EF與AD互相平分
D、△DFE是△ABC的位似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,點(diǎn)D、E、F分別是△ABC的邊AB、BC、AC的中點(diǎn),連接DE、EF,要使四邊形ADEF為正方形,還需增加條件:
△ABC為等腰直角三角形,且AB=AC,∠A=90°(此題答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)D,E,F(xiàn)分別是△ABC的三邊AB,AC,BC上的中點(diǎn),如果△ABC的面積是18cm2,則△DBF的面積是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D、E、F分別是△ABC三邊AB、BC、AC的中點(diǎn),則△DEF的周長(zhǎng)是△ABC周長(zhǎng)的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案