【題目】如圖1所示,在正方形ABCD中,AB=1, 是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的動點(點E與點A,D不重合),過E作 所在圓的切線,交邊DC于點F,G為切點.
(1)求證:EA=EG;
(2)設AE=x,F(xiàn)C=y,求y關于x的函數(shù)關系式,并直接寫出x的取值范圍;
(3)如圖2所示,將△DEF沿直線EF翻折后得△D1EF,連接AD1 , D1D,試探索:當點E運動到何處時,△AD1D與△ED1F相似?請說明理由.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴∠BAD=∠D=90°,AD=CD=AB=1,

∴AD⊥BA,

∴AD是圓B的切線,

∵EG是圓B的切線,

∴EA=EG


(2)解:∵EF切圓B于點G,

∴EA=EG,F(xiàn)C=FG.

∵AE=x,F(xiàn)C=y

∴EF=x+y,DE=1﹣x,DF=1﹣y,

在Rt△DEF中,根據(jù)勾股定理,得:(x+y)2=(1﹣x)2+(1﹣y)2

∴y= (0<x<1)


(3)解:當點E運動到AD的中點時,△AD1D與△ED1F相似;理由如下:

設直線EF交線段DD1于點H,由題意,得:

△EDF≌△ED1F,EF⊥DD1且DH=D1H.

∵AE= ,AD=1,

∴AE=ED.

∴EH∥AD1,∠AD1D=∠EHD=90°.

又∵∠ED1F=∠EDF=90°,

∴∠FD1D=∠AD1D.

∴D1F∥AD,

∴∠ADD1=∠DD1F=∠EFD=45°,

∴△ED1F∽△AD1D.


【解析】(1)證出AD是圓B的切線,由切線長定理即可得出結論;(2)根據(jù)切線長定理、正方形的性質得到有關的線段用x,y表示,再根據(jù)勾股定理建立函數(shù)關系式.(3)根據(jù)切線長定理找到角之間的關系,從而發(fā)現(xiàn)正方形,根據(jù)正方形的性質得到兩個角對應相等,從而證明三角形相似.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為增強環(huán)保意識,某社區(qū)計劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進行了一次抽樣調查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調查了多少個家庭?
(2)將圖①中的條形圖補充完整,直接寫出用車時間的中位數(shù)落在哪個時間段內;
(3)求用車時間在1~1.5小時的部分對應的扇形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有1600個,請你估計該社區(qū)用車時間不超過1.5小時的約有多少個家庭?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠A=90°,AC=AB=4, D,E分別是AB,AC的中點.若等腰Rt△ADE繞點A逆時針旋轉,得到等腰Rt△AD1E1 , 設旋轉角為α(0<α≤180°),記直線BD1與CE1的交點為P.

(1)如圖1,當α=90°時,線段BD1的長等于 , 線段CE1的長等于;(直接填寫結果)
(2)如圖2,當α=135°時,求證:BD1= CE1 , 且BD1⊥CE1;
(3)①設BC的中點為M,則線段PM的長為;②點P到AB所在直線的距離的最大值為 . (直接填寫結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB和線段CD重合部分CB的長是線段AB的三分之一,M、N分別是線段AB和線段CD的中點,若,則線段AD的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B.
(1)請你在圖中把圖補畫完整;
(2)求C′B的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD中,∠ABC的角平分線BE將邊AD分成長度為5cm6cm的兩部分,則平行四邊形ABCD的周長為__________________cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好食堂的服務工作,某學校食堂對學生最喜愛的菜肴進行了抽樣調查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計圖(不完整):

(1)參加抽樣調查的學生數(shù)是______人,扇形統(tǒng)計圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計圖補充完整;

(3)若全校有3000名學生,請你根據(jù)以上數(shù)據(jù)估計最喜愛“烤腸”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】諸暨某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接五一國際勞動節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.

設每件童裝降價x元時,每天可銷售______件,每件盈利______元;x的代數(shù)式表示

每件童裝降價多少元時,平均每天贏利1200元.

要想平均每天贏利2000元,可能嗎?請說明理由.

查看答案和解析>>

同步練習冊答案