【題目】“某市為處理污水,需要鋪設一條長為4000米的管道,為了盡量減少施工對交通所造成的影響,實際施工時×××××.設原計劃每天鋪設管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應補為( )
A.每天比原計劃多鋪設10米,結果延期20天才完成任務
B.每天比原計劃少鋪設10米,結果延期20天才完成任務
C.每天比原計劃多鋪設10米,結果提前20天完成任務
D.每天比原計劃少鋪設10米,結果提前20天完成任務
科目:初中數(shù)學 來源: 題型:
【題目】某書報亭開設兩種租書方式:一種是零星租書,每冊收費1元;另一種是會員卡租書,辦卡費每月12元,租書費每冊0.4元.小軍經(jīng)常來該店租書,若每月租書數(shù)量為x冊.
(1)寫出零星租書方式應付金額(元)與租書數(shù)量x(冊)之間的函數(shù)關系式。
(2)寫出會員卡租書方式應付金額(元)與租書數(shù)量x(冊)之間的函數(shù)關系式.
(3)小軍選取哪種租書方式更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與y軸的交點為A,直線與直線的交點M的坐標為.
(1)求a和k的值;
(2)直接寫出關于x的不等式的解集;
(3)若點B在x軸上,,直接寫出點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家準備給邊長為6m的正方形客廳用黑色和白色兩種瓷磚鋪設,如圖所示:①黑色瓷磚區(qū)域Ⅰ:位于四個角的邊長相同的小正方形及寬度相等的回字型邊框(陰影部分),②白色瓷磚區(qū)域Ⅱ:四個全等的長方形及客廳中心的正方形(空白部分).設四個角上的小正方形的邊長為x(m).
(1)當x=0.8時,若客廳中心的正方形瓷磚鋪設的面積為16m2,求回字型黑色邊框的寬度;
(2)若客廳中心的正方形邊長為4m,白色瓷磚區(qū)域Ⅱ的總面積為26m2,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點.
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關系如何?試證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組同學進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
A. 8.1米 B. 17.2米 C. 19.7米 D. 25.5米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中,,為線段上一點(不與重合),點為射線上一點,,設,.
(1)如圖1,①若,,則__________,___________.
②若,,則__________,___________.
③寫出與的數(shù)量關系,并說明理由;
(2)如圖2,當點在的延長線上時,其它條件不變,請直接寫出與的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個動點在平面直角坐標系中按箭頭所示方向作折線運動,即第一次從原點運動到,第二次從運動到,第三次從運動到,第四次從運動到,第五次從運動到,……按這樣的運動規(guī)律,經(jīng)過第2015次運動后,動點的坐標是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com