用同一種正多邊形能夠拼地板的有________、________和________三種.

正三角形    正方形    正六邊形
分析:幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角.360°為正多邊形一個內(nèi)角的整數(shù)倍才能單獨鑲嵌.
解答:由幾何圖形鑲嵌成平面的條件可知用同一種正多邊形能夠拼地板的有正三角形、正方形和正六邊形三種.
點評:用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個平面圖案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、用同一種正多邊形能夠拼地板的有
正三角形
、
正方形
正六邊形
三種.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、用同一種正多邊形能鋪滿地面的有
正三角形,正方形,正六邊形
;能夠鋪滿地面的任意多邊形有
三角形
,
四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點拼在一起的幾個多邊形的內(nèi)角和為360°時,就能夠拼成一個平面圖形.
探究用同一種正多邊形進行平面密鋪.
例如:如圖1,用三個同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請問僅限于同一種類型的多邊形進行密鋪,哪幾種能平面密鋪?
①②
①②
(填序號);
①正三角形    ②正四邊形     ③正五邊形     ④正八邊形
探究用兩種邊長相等的正多邊形進行平面密鋪.
例如:如圖2,二個正三角形和二個正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進行平面密鋪,以下哪幾種是可行的?
ABE
ABE

A.正三角形和正方形      B.正方形和正八邊形         C.正方形和正五邊形
D.正八邊形和正六邊形    E.正三角形和正十二邊形    F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進行平面密鋪,請寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
正三角形、正四邊形,正十二邊形
正三角形、正四邊形,正十二邊形

正三角形,正十邊形,正十五邊形
正三角形,正十邊形,正十五邊形

(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進行平面密鋪嗎?若能,請在方格紙中畫出密鋪的設(shè)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們常用各種多邊形地磚鋪砌成美麗的圖案,也就是說,使用給定的某些多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里稱為平面密鋪).當(dāng)圍繞一點拼在一起的幾個多邊形的內(nèi)角和為360°時,就能夠拼成一個平面圖形.
探究用同一種正多邊形進行平面密鋪.
例如:如圖1,用三個同種類型(大小一樣、形狀相同)的正六邊形地磚可以平面密鋪.
(1)請問僅限于同一種類型的多邊形進行密鋪,哪幾種能平面密鋪?______(填序號);
①正三角形 、谡倪呅巍  ③正五邊形   ④正八邊形
探究用兩種邊長相等的正多邊形進行平面密鋪.
例如:如圖2,二個正三角形和二個正六邊形可以平面密鋪.
(2)限用兩種邊長相等的正多邊形進行平面密鋪,以下哪幾種是可行的?______
A.正三角形和正方形   B.正方形和正八邊形     C.正方形和正五邊形
D.正八邊形和正六邊形  E.正三角形和正十二邊形  F.正三角形和正五邊形
(3)繼續(xù)推廣到用三種不同的正多邊形進行平面密鋪,請寫出符合題意的不同組合.
例如:①正三角形、正方形、正六邊形;
②正三角形、正九邊形、正十八邊形;
③______;
④______.
(4)如果用形狀,大小相同的如圖3方格紙中的三角形,能進行平面密鋪嗎?若能,請在方格紙中畫出密鋪的設(shè)計圖.

查看答案和解析>>

同步練習(xí)冊答案