(2010•湘潭)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

【答案】分析:(1)由CD∥AB,得∠DCA=∠CAB,加上一組直角,即可證得所求的三角形相似.
(2)在Rt△ABC中,由勾股定理可求得AC的長,根據(jù)(1)題所得相似三角形的比例線段,即可求出DC的長.
(3)分析圖象可知:四邊形AFEC的面積可由△ABC、△BEF的面積差求得,分別求出兩者的面積,即可得到y(tǒng)、t的函數(shù)關(guān)系式,進(jìn)而可根據(jù)函數(shù)的性質(zhì)及自變量的取值范圍求出y的最小值.
解答:解:(1)∵CD∥AB,∴∠BAC=∠DCA
又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,
∴△ACD∽△BAC.

(2)Rt△ABC中,AC==8cm,
∵△ACD∽△BAC,∴=
,解得:DC=6.4cm.

(3)過點E作AB的垂線,垂足為G,
∵∠ACB=∠EGB=90°,∠B公共,
∴△ACB∽△EGB,
,即,故
y=S△ABC-S△BEF
=
=;
故當(dāng)t=時,y的最小值為19.
點評:此題考查了梯形的性質(zhì)、相似三角形的判定和性質(zhì)、圖形面積的求法以及二次函數(shù)最值的應(yīng)用等知識,能夠?qū)⒚娣e問題轉(zhuǎn)換為二次函數(shù)的最值問題是解答(3)題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•湘潭)如圖,直線y=-x+6與x軸交于點A,與y軸交于點B,以線段AB為直徑作⊙C,拋物線y=ax2+bx+c過A、C、O三點.
(1)求點C的坐標(biāo)和拋物線的解析式;
(2)過點B作直線與x軸交于點D,且OB2=OA•OD,求證:DB是⊙C的切線;
(3)拋物線上是否存在一點P,使以P、O、C、A為頂點的四邊形為直角梯形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省湘潭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•湘潭)如圖,直線y=-x+6與x軸交于點A,與y軸交于點B,以線段AB為直徑作⊙C,拋物線y=ax2+bx+c過A、C、O三點.
(1)求點C的坐標(biāo)和拋物線的解析式;
(2)過點B作直線與x軸交于點D,且OB2=OA•OD,求證:DB是⊙C的切線;
(3)拋物線上是否存在一點P,使以P、O、C、A為頂點的四邊形為直角梯形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省湘潭市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•湘潭)如圖,我護(hù)航軍艦在某海域航行到B處時,燈塔A在我軍艦的北偏東60°的方向;我軍艦從B處向正東方向行駛1800米到達(dá)C處,此時燈塔A在我軍艦的正北方向.求C處與燈塔A的距離.(結(jié)果保留四個有效數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省湘潭市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•湘潭)如圖,已知AB∥CD,∠1=80°,則∠2=    度.

查看答案和解析>>

同步練習(xí)冊答案