某園藝公司對(duì)一塊直角三角形的花園進(jìn)行改造,測(cè)得兩直角邊長(zhǎng)分別為a=6米,b=8米.現(xiàn)要將其擴(kuò)建成等腰三角形,且擴(kuò)充部分是以b為直角邊的直角三角形,則擴(kuò)建后的等腰三角形花圃的周長(zhǎng)為( 。┟祝
A.32或20+
B.32或36或
C.32或或20+
D.32或36或或20+
C
由于擴(kuò)充所得的等腰三角形腰和底不確定,若設(shè)擴(kuò)充所得的三角形是△ABD,則應(yīng)分為①AB=AD,②AD=BD兩種情況進(jìn)行討論.
解:如圖所示:在Rt△ABC中,
∵AC=8m,BC=6m,
∴AB=10m,

如圖1,當(dāng)AB=AD時(shí),CD=BC=6m,
此時(shí)等腰三角形花圃的周長(zhǎng)=10+10+6+6=32(m);
如圖2:當(dāng)AD=BD時(shí),設(shè)AD=BD=xm;
Rt△ACD中,BD=xm,CD=(x﹣6)m;
由勾股定理,得AD2=DC2+CA2,即(x﹣6)2+82=x2,解得x=
此時(shí)等腰三角形綠地的周長(zhǎng)=×2+10=(m).
當(dāng)AB=BD時(shí),在Rt△ACD中,AD===,
∴等腰三角形綠地的周長(zhǎng)=2×10+=20+
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,則BE=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,四邊形ABCD中,∠A=100°,∠C=70°.將△BMN沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,則∠B =      度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD是由三個(gè)直角三角形拼成的,各直角邊的長(zhǎng)度如圖所示。
(1)請(qǐng)你運(yùn)用兩種方法計(jì)算梯形ABCD的面積;
(2)根據(jù)(1)的計(jì)算,探索三者之間的關(guān)系,并用式子表示出來(lái)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知:D是△ABC中BC邊上一點(diǎn),EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.

證明:在△AEB和△AEC中,

∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
問(wèn):上面證明過(guò)程是否正確?若正確,請(qǐng)寫(xiě)出每一步推理根據(jù);若不正確,請(qǐng)指出錯(cuò)在哪一步?并寫(xiě)出你認(rèn)為正確的推理過(guò)程;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖.Rt△ABC內(nèi)接于⊙O,BC為直徑,AB=4,AC=3,D是的中點(diǎn),CD與AB的交點(diǎn)為E,則等于( 。
A.4B.3.5C.3D.2.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N.有如下結(jié)論:①△ACE≌△DCB,②CM=CN,③AC=DN,④BN=EM.其中正確結(jié)論的個(gè)數(shù)有(  )

A.1個(gè)        B.2個(gè)        C.3個(gè)        D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,BO、CO分別平分∠ABC與∠ACB,MN∥BC,若AB=36,AC=24,則△AMN的周長(zhǎng)是( 。
A.60B.66C.72D.78

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到AB的距離是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案