精英家教網 > 初中數學 > 題目詳情
(2002•紹興)如圖,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE,BC的延長線相交于點F,若AE=10,則S△ADE+S△CEF的值是   
【答案】分析:如圖,首先把梯形補成正方形,然后把△BEC旋轉到△BMN的位置,根據它們條件容易證明:△ANB和△ABE全等,這樣AE=AD=10,設CE=x,然后用x表示AM,AD,DE在根據△ADE是直角三角形利用勾股定理建立關于x的方程,解方程求出x,就可以求出S△ADE+S△CEF的值.
解答:解:如圖,延長DA,過B作BM⊥DA,交其延長線于M.
∴到四邊形DCBM是正方形,
∴DM=BC=CD=12,再把△BEC旋轉到△BMN的位置,
∴BN=BE,∠EBC=∠MBN,CE=MN
∵∠ABE=45°
∴∠EBC+∠ABM=90°-45°=45°
∴∠ABN=∠ABM+∠MBN=45°,AB公共
∴△ABN≌△ABE
∴AN=AE=10,設CE=x,那么MN=x,DE=CD-CE=12-x,AM=10-x,AD=12-AM=2+x,
在Rt△ADE中:AD2+DE2=AE2
∴(2+x)2+(12-x)2=102
∴x1=4,x2=6,
當x=4時,CE=4,DE=8,AD=6
∵AD∥CF
∴△ADE∽△FCE,

∴CF=3,
∴S△ADE+S△CEF=30;
當x=6時,CE=6,DE=6,AD=8
∵AD∥CF
∴△ADE∽△FCE

∴CF=8
∴S△ADE+S△CEF=48.
故S△ADE+S△CEF的值是 30或48.
故答案為:30或48.
點評:此題首先作輔助線把梯形的問題轉化成正方形的問題,然后利用旋轉方法解題,最后利用相似三角形的性質和勾股定理求AD、CE、DE,從而求題目的面積之和.
練習冊系列答案
相關習題

科目:初中數學 來源:2002年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2002•紹興)如圖,已知平面直角坐標系中三點A(4,0),(0,4),P(x,0)(x<0),作PC⊥PB交過點A的直線l于點C(4,y).
(1)求y關于x的函數解析式;
(2)當x取最大整數時,求BC與PA的交點Q坐標.

查看答案和解析>>

科目:初中數學 來源:2002年浙江省紹興市中考數學試卷(解析版) 題型:解答題

(2002•紹興)如圖,已知平面直角坐標系中三點A(4,0),(0,4),P(x,0)(x<0),作PC⊥PB交過點A的直線l于點C(4,y).
(1)求y關于x的函數解析式;
(2)當x取最大整數時,求BC與PA的交點Q坐標.

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2002•紹興)如圖,某斜拉橋的一組鋼索a,b,c,d,e,共五條,它們互相平行,鋼索與橋面的固定點P1,P2,P3,P4,P5中每相鄰兩點等距離.
(1)問至少需知道幾條鋼索的長,才能計算出其余鋼索的長?
(2)請你對(1)中需知道的這幾條鋼索長給出具體數值,并由此計算出其余鋼索的長.

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2002•紹興)如圖,?ABCD中,AE平分∠DAB,∠B=100°,則∠AED=( )

A.100°
B.80°
C.60°
D.40°

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《三角形》(03)(解析版) 題型:選擇題

(2002•紹興)如圖,以圓柱的下底面為底面,上底面圓心為頂點的圓錐的母線長為4,高線長為3,則圓柱的側面積為( )

A.30π
B.π
C.20π
D.π

查看答案和解析>>

同步練習冊答案