【題目】如圖,拋物線(a≠0)的對稱軸為直線x=1,與x軸的交點(diǎn)(,0),(,0),且﹣1<<0<,有下列5個結(jié)論:①abc<0;②b>a+c;③a+b>k(ka+b)(k為常數(shù),且k≠1);④2c<3b;⑤若拋物線頂點(diǎn)坐標(biāo)為(1,n),則=4a(c﹣n),其中正確的結(jié)論有( 。﹤.
A. 5B. 4C. 3D. 2
【答案】A
【解析】
由拋物線的開口方向、對稱軸及拋物線與y軸的交點(diǎn)可判斷①;由x=1時函數(shù)值y<0可判斷②;由當(dāng)x=1時,函數(shù)取得最大值可判斷③;由x=-1時,y=a-b+c<0且a=- 可判斷④;由頂點(diǎn)的縱坐標(biāo)n= 可判斷
∵拋物線開口向下,且與y軸的交點(diǎn)在正半軸,
∴a<0,c>0,
∵對稱軸x=- =1,
∴b=-2a>0,
∴abc<0,故①正確;
由圖象知,x=-1時,y=a-b+c<0,
∴b>a+c,故②正確;
∵當(dāng)x=1時,函數(shù)取得最大值,
∴y=a+b+c>ak+bk+c(k≠1),
即a+b>k(ka+b)(k為常數(shù),且k≠1),故③正確;
∵x=-1時,y=a-b+c<0,且b=-2a,
∴-b+c<0,即2c<3b,故④正確;
∵拋物線頂點(diǎn)坐標(biāo)為(1,n),
∴n= ,即b =4a(c-n),故⑤正確
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個單位,再向上平移4個單位后,與拋物線y2=ax2+bx+c重合,現(xiàn)有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當(dāng)y2≤y3時自變量x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=2,點(diǎn)E為線段CD的中點(diǎn),動點(diǎn)F從點(diǎn)C出發(fā),沿C→B→A的方向在CB和BA上運(yùn)動,將矩形沿EF折疊,點(diǎn)C的對應(yīng)點(diǎn)為C’,當(dāng)點(diǎn)C’恰好落在矩形的對角線上時(不與矩形頂點(diǎn)重合),點(diǎn)F運(yùn)動的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想
如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動,且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動時,連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請直接寫出線段CK長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面內(nèi)有一點(diǎn)P到△ABC的三個頂點(diǎn)的距離分別為PA、PB、PC,若有,則稱點(diǎn)P為關(guān)于點(diǎn)A的勾股點(diǎn).矩形ABCD中,AB=5,BC=6,E是矩形ABCD內(nèi)一點(diǎn),且點(diǎn)C是關(guān)于點(diǎn)A的勾股點(diǎn),若是△ADE等腰三角形,求AE的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)P(2,3),函數(shù)y=ax+b經(jīng)過反比例函數(shù)圖象上一點(diǎn)Q(1,m),交x軸于A交y軸于B(A,B不重合).
(1)求出點(diǎn)Q的坐標(biāo).(2)若OA=OB,直接寫出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點(diǎn)A,B,M,N都在格點(diǎn)上.從點(diǎn)M,N中任取一點(diǎn),與點(diǎn)A,B順次連接組成一個三角形,則下列事件是必然事件的是( )
A.所得三角形是銳角三角形B.所得三角形是直角三角形
C.所得三角形是鈍角三角形D.所得三角形是等腰三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com