將二次函數(shù)的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位后,所得圖象的函數(shù)表達(dá)式是       _。
    

試題分析:二次函數(shù)的圖象的平移,左右平移對(duì)應(yīng)橫坐標(biāo)變化:左加右減;上下平移是縱坐標(biāo)變化:上加下減 。故次函數(shù)的圖象向右平移1個(gè)單位,得到,再向上平移2個(gè)單位,得到
點(diǎn)評(píng):二次函數(shù)的圖象的平移,在平移的過程中要清晰知道是橫坐標(biāo)變化,還是是縱坐標(biāo)變化,不要混淆。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)圖像向左平移2個(gè)單位,向下平移1個(gè)單位后得到二次函數(shù)的圖像,則二次函數(shù)的解析式為____    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).

(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請(qǐng)通過計(jì)算說明;
(3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形“腳手架”CDAB,使A、D點(diǎn)在拋物線上。B、C點(diǎn)在地面OM線上(如圖2所示).為了籌備材料,需測(cè)算“腳手架”三根鋼桿AB、AD、DC的長(zhǎng)度之和的最大值是多少,請(qǐng)你幫施工隊(duì)計(jì)算一下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為2的⊙C與軸的正半軸交于點(diǎn)A,與軸的正半軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(1,0),若拋物線過A、B兩點(diǎn)。

(1)求拋物線的解析式;
(2)在拋物線上是否存在P,使得∠PBO=∠POB?若存在,求出點(diǎn)P的坐標(biāo);若不存在說明理由;
(3)若點(diǎn)M是拋物線(在第一象限內(nèi)的部分)上一點(diǎn),△MAB的面積為S,求S的最大(。┲。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點(diǎn)在第二象限,A(2,0),AB交y軸于E,將紙片過E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時(shí)間為t(s),移動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

(1)求折痕EF的長(zhǎng);
(2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.
(3)若四邊形BCFE平移時(shí),另有一動(dòng)點(diǎn)H與四邊形BCFE同時(shí)出發(fā),以每秒個(gè)單位長(zhǎng)度從點(diǎn)A沿射線AC運(yùn)動(dòng),試求出當(dāng)t為何值時(shí),△HE1E為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=(x-3m)²+m-1(m為常數(shù)),當(dāng)m取不同的值時(shí),其圖象構(gòu)成一個(gè)“拋物線系”,該拋物線系中所有拋物線的頂點(diǎn)都在一條直線上,那么這條直線的解析式是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

紅星建材店為某工廠經(jīng)銷一種建筑材料.當(dāng)每噸售價(jià)為260元時(shí),月銷售量為45噸.該建材店為提高經(jīng)營(yíng)利潤(rùn),準(zhǔn)備采取降價(jià)的方式進(jìn)行促銷.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):當(dāng)每噸售價(jià)每下降10元時(shí),月銷售量就會(huì)增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費(fèi)用100元.設(shè)每噸材料售價(jià)為x(元),該經(jīng)銷店的月利潤(rùn)為y(元).
(1)當(dāng)每噸售價(jià)是240元時(shí),計(jì)算此時(shí)的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤(rùn),售價(jià)應(yīng)定為每噸多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)時(shí),只在時(shí)取得最大值, 則實(shí)數(shù)的取值范圍是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線yax2bxcx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)Bx軸的正半軸上,點(diǎn)Cy軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
(1)求AB、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接ACBC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)EEFACBC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案