已知:如圖,在等腰梯形ABCD中,AD∥BC,AD=6,BC=14,tgB=數(shù)學(xué)公式.求這個(gè)梯形的面積?

解:分別過點(diǎn)A、D作BC的垂線,垂足分別為點(diǎn)E、F.(1分)
由題意,得BE=FC=4.(3分)
在△ABE中,∵∠AEB=90°,
∴tgB=.(2分)
∵tgB=,∴AE=6.(2分)
∴S梯形ABCD=(AD+BC)AE=60.(2分)
分析:作輔助線(分別過點(diǎn)A、D作BC的垂線,垂足分別為點(diǎn)E、F)構(gòu)造直角三角形ABE.利用等腰梯形的性質(zhì)求得BE=FC=4,然后在直角三角形中,根據(jù)三角函數(shù)的正切值的意義求得AE=6;最后根據(jù)題型的面積公式求該梯形的面積.
點(diǎn)評:本題考查了等腰梯形的性質(zhì)、解直角三角形.解答該題時(shí),通過作輔助線“分別過點(diǎn)A、D作BC的垂線,垂足分別為點(diǎn)E、F”構(gòu)造了直角三角形,然后利用直角三角形的三角函數(shù)值的定義求得該等腰梯形的高線AE的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長度的速度向A點(diǎn)勻速運(yùn)動,到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長度的速度向點(diǎn)B勻速運(yùn)動.當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動,設(shè)P、Q運(yùn)動的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時(shí),請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長度的速度向A點(diǎn)勻速運(yùn)動,到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長度的速度向點(diǎn)B勻速運(yùn)動.當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動,設(shè)P、Q運(yùn)動的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動的過程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動,線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過原點(diǎn)O時(shí),請直接寫出t的值.

 

查看答案和解析>>

同步練習(xí)冊答案