求下面函數(shù)的函數(shù)值:

當(dāng)x=5時(shí),y=x-1的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下面材料:
若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),證明直線x=
x1+x2
2
為此拋物線的對(duì)稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn)
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-
b
2a

∴直線x=
x1+x2
2
為此拋物線的對(duì)稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),直線x=
x1+x2
2
為該拋物線的對(duì)稱軸,那么自變量取x1,x2時(shí)函數(shù)值相等嗎?寫(xiě)出你的猜想,并參考上述方法寫(xiě)出證明過(guò)程;
(2)利用以上結(jié)論解答下面問(wèn)題:
已知二次函數(shù)y=x2+bx-1當(dāng)x=4時(shí)的函數(shù)值與x=2007時(shí)的函數(shù)值相等,求x=2012時(shí)的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解決后面給出的問(wèn)題
例.給定二次函數(shù)y=(x-1)2+1,當(dāng)t≤x≤t+1時(shí),求y的函數(shù)值的最小值.
解:函數(shù)y=(x-1)2+1,其對(duì)稱軸方程為x=1,頂點(diǎn)坐標(biāo)為(1,1),圖象開(kāi)口向上.下面分類討論:

(1)如圖1所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1左側(cè)時(shí),即有1<t.此時(shí)y隨x的增大而增大,當(dāng)x=t時(shí),函數(shù)取得最小值,y最小值=(t-1)2+1;
(2)如圖2所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1內(nèi)時(shí),即有t≤1≤t+1,解這個(gè)不等式,即0≤t≤1.此時(shí)當(dāng)x=1時(shí),函數(shù)取得最小值,y最小值=1;
(3)如圖3所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1右側(cè)時(shí),有t+1<1,解不等式即得t<0.此時(shí)Y隨X的增大而減小,當(dāng)x=t+1時(shí),函數(shù)取得最小值,y最小值=t2+1
綜上討論,當(dāng)1<t時(shí),函數(shù)取得最小值,y最小值=(t-1)2+1
此時(shí)當(dāng)0≤t≤1時(shí),函數(shù)取得最小值,y最小值=1.
當(dāng)t<0時(shí),函數(shù)取得最小值,y最小值=t2+1
根據(jù)上述材料,完成下列問(wèn)題:
問(wèn)題:求函數(shù)y=x2+2x+3在t≤x≤t+2時(shí)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的材料
例1:已知函數(shù)y=3x-1
解:由y=3x-1,可得x=
y+1
3
,所以原函數(shù)y=3x-1的反函數(shù)是y=
x+1
3

例2:已知函數(shù)y=
x+3
x-1
(x≠1)
解:由y=
2x+3
x-1
,可得x=
y+3
y-2
,所以原函數(shù)y=
2x+3
x-1
的反函數(shù)是y=
x+3
x-2
(x≠2)
在以上兩例中,在相應(yīng)的條件下,一個(gè)原函數(shù)有反函數(shù)時(shí),原函數(shù)中自變量x的取值范圍就是它的反函數(shù)中y的函數(shù)值取值范圍,原函數(shù)中函數(shù)值y的取值范圍就是它的反函數(shù)的自變量x取值范圍,通過(guò)以上內(nèi)容完成下面任務(wù):
(1)求函數(shù)y=-2x+3的反函數(shù).
(2)函數(shù)y=
x-2
x+1
的反函數(shù)的函數(shù)值的取值范圍為
B
B

A.y≠1  B.y≠-1  C.y≠-2  D.y≠2.
(3)下列函數(shù)中反函數(shù)是它本身的是
①④⑤
①④⑤
(填序號(hào)即可)
 ①y=x ②y=x+1 ③y=-x+1 ④y=
1
x
 ⑤y=
x+1
x-1
(x≠1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個(gè)問(wèn)題:若1≤x≤m,求二次函數(shù)y=x2-6x+7的最大值.他畫(huà)圖研究后發(fā)現(xiàn),x=1和x=5時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)m進(jìn)行分類討論.
他的解答過(guò)程如下:
∵二次函數(shù)y=x2-6x+7的對(duì)稱軸為直線x=3,
∴由對(duì)稱性可知,x=1和x=5時(shí)的函數(shù)值相等.
∴若1≤m<5,則x=1時(shí),y的最大值為2;
若m≥5,則x=m時(shí),y的最大值為m2-6m+7.
請(qǐng)你參考小明的思路,解答下列問(wèn)題:
(1)當(dāng)-2≤x≤4時(shí),二次函數(shù)y=2x2+4x+1的最大值為
49
49

(2)若p≤x≤2,求二次函數(shù)y=2x2+4x+1的最大值;
(3)若t≤x≤t+2時(shí),二次函數(shù)y=2x2+4x+1的最大值為31,則t的值為
1或-5
1或-5

查看答案和解析>>

同步練習(xí)冊(cè)答案