精英家教網 > 初中數學 > 題目詳情
已知二次函數y=-x2+(m-2)x+m+1.
(1)試說明:不論m取任何實數,這個二次函數的圖象必與x軸有兩個交點.
(2)當m為何值時,這兩個交點都在原點的左側?
(3)當m為何值時,這個二次函數的圖象的對稱軸是y軸?
(1)證明:△=(m-2)2-4×(-1)×(m+1)
=m2+8,
∵m2≥0,
∴m2+8>0,即△>0,
∴不論m取任何實數,這個二次函數的圖象必與x軸有兩個交點;

(2)設二次函數的圖象與x軸有兩個交點坐標為(x1,0),(x2,0),則x1和x2為關于x的方程-x2+(m-2)x+m+1=0的兩不等實數根,且x1<0,x2<0,
∴x1+x2=m-2<0,x1•x2=-(m+1)>0,
∴m<-1;
即m<-1時,這兩個交點都在原點的左側;

(3)根據題意得x=-
m-2
2×(-1)
=0,
解得m=2,
即m=2時,這個二次函數的圖象的對稱軸是y軸.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為原點,已知A(2,0)、C(1,3
3
),將△OAC繞AC的中點G旋轉180°,點O落到點B的位置,拋物線y=ax2-2
3
x經過點A,點D是拋物線的頂點.
(1)求拋物線的表達式;
(2)判斷點B是否在拋物線上;
(3)若點P是x軸上A點左邊的一個動點,當以P、A、D為頂點的三角形與△OAB相似時,求出點P的坐標;
(4)若點M是y軸上的一個動點,要使△MAD的周長最小,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知一元二次方程x2+px+q+1=0的一根為2.
(1)求q關于p的關系式;
(2)求證:拋物線y=x2+px+q與x軸有兩個交點;
(3)設拋物線y=x2+px+q的頂點為M,且與x軸相交于A(x1,0)、B(x2,0)兩點,求使△AMB面積最小時的拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y=(x+m)2+k的頂點為(1,-4)
(1)求二次函數的解析式及圖象與x軸交于A、B兩點的坐標.
(2)將二次函數的圖象沿x軸翻折,得到一個新的拋物線,求新拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知關于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無論m取任何實數時,方程恒有實數根;
(2)若關于x的二次函數y=mx2-(3m-1)x+2m-2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式;
(3)在直角坐標系xoy中,畫出(2)中的函數圖象,結合圖象回答問題:當直線y=x+b與(2)中的函數圖象只有兩個交點時,求b的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知,如圖,在直角坐標系中O是坐標原點,四邊形AOCB是矩形,0C=6,OA=2,P是邊AB上的任意一點.當點P在邊AB上移動時,是否存在這樣的點P使得OP⊥PC成立?若存在,請求出點P的坐標,畫出滿足條件的P點,并求出經過D、P、C三點的拋物線的對稱軸;若不存在這樣的P點,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

為了美化校園環(huán)境,某中學準備在一塊空地(如圖,矩形ABCD,AB=10m,BC=20m)上進行綠化.中間的一塊(圖中四邊形EFGH)上種花,其他的四塊(圖中的四個Rt△)上鋪設草坪,并要求AE=AH=CF=CG.那么在滿足上述條件的所有設計中,是否存在一種設計,使得四邊形EFGH(中間種花的一塊)面積最大?若存在,請求出該設計中AE的長和四邊形EFGH的面積;若不存在,請說明理由!

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若二次函數y=kx2-2x-l與x軸有交點,則k的取值范圍是( 。
A.k>-1B.k≤1且k≠0C.k<-1D.k≥-1且k≠0

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y=x2+px+q(p,q為常數,△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點,且A,B兩點間的距離為d,例如,通過研究其中一個函數y=x2-5x+6及圖象(如圖),可得出表中第2行的相關數據.
(1)在表內的空格中填上正確的數;
(2)根據上述表內d與△的值,猜想它們之間有什么關系?再舉一個符合條件的二次函數,驗證你的猜想;
(3)對于函數y=x2+px+q(p,q為常數,△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對你的出色表現另外獎勵3分.
y=x2+px+qpqx1x2d
y=x2-5x+6-561231
y=x2-
1
2
x
-
1
2
1
4
1
2
y=x2+x-2-2-23

查看答案和解析>>

同步練習冊答案