【題目】在平面直角坐標系xOy,拋物線 y軸于點為A,頂點為D對稱軸與x軸交于點H

1求頂點D的坐標用含m的代數(shù)式表示);

2當拋物線過點1-2),且不經(jīng)過第一象限時平移此拋物線到拋物線的位置,求平移的方向和距離

3當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,m的值

【答案】1頂點Dm,1-m);(2)向左平移了1個單位,向上平移了2個單位;(3m=1m=2

【解析】試題分析: 把拋物線的方程配成頂點式,即可求得頂點坐標.

把點代入求出拋物線方程,根據(jù)平移規(guī)律,即可求解.

分兩種情況進行討論.

試題解析:1)∵,

∴頂點Dm1-m).

2)∵拋物線過點(1,-2),

,

(舍去),

∴拋物線的頂點是(2,-1).

∵拋物線的頂點是(11),∴向左平移了1個單位,向上平移了2個單位.

3)∵頂點D在第二象限,∴

情況1,點A軸的正半軸上,如圖(1).作于點G

A0, ),Dm,-m+1),

H),G,

.∴

整理得: .∴(舍).

情況2,點A軸的負半軸上,如圖(2).于點G

A0, ),Dm,-m+1),∴H),G

.∴

整理得: .∴(舍),

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題

根據(jù)城市規(guī)劃設計,某市工程隊準備為該城市修建一條長4800米的公路.鋪設600米后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務,該工程隊原計劃每天鋪設公路多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,AC=6,BC=8,現(xiàn)將△ABC沿直線AD折疊,使AC落在斜邊AB上,且C與點E重合,則AD的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A2,0),B0,4),若以B,OC為頂點的三角形與△ABO全等,則點C的坐標不能為(  )

A.0,﹣4B.(﹣2,0C.2,4D.(﹣24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.

(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2

(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?

(3)在(1)中,當P,Q出發(fā)幾秒時,△PBQ有最大面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的內(nèi)容,再解決問題:

例題:若++-+=,求的值.

解:++-+=

+++-+=

+-=

-=

-,

問題:(1)若--= 的值;

2)已知的三邊長都是正整數(shù),且滿足--+│3-│=,請問是怎樣形狀的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點DAB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.

(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD△CQP是否全等,請說明理由;

(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD△CQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】①已知:△ABC中,BC=m,A=60°.問滿足此條件的三角形有多少個?它們的最大面積存在嗎?若存在求出最大面積,并回答此時三角形的形狀;若不存在,請說明理由.

②有一個正方形的養(yǎng)魚塘,四個角各有一棵大樹.生產(chǎn)隊設想把魚塘擴大,使它成為一個面積最大的正方形,而又不把樹挖掉,這一設想能否實現(xiàn)?若能,請你設計畫出圖形,并證明此時面積最大.若不能,請說明理由.

③上問題推廣,有一個正五邊形的養(yǎng)魚塘,五個角各有一棵樹,要擴大使它成為面積最大的正五邊形,而又不把樹挖掉,可以嗎?畫圖說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等腰三角形,ABACABBC,∠1=∠290°,∠1+∠BAC180°,點A、F、ED在一條直線上,點DBC邊上,CD2BD.若△ABC的面積為40,求△ABE與△CDF的面積之和________

查看答案和解析>>

同步練習冊答案