25、已知多項(xiàng)式x2-mx-n與x-2的乘積中不含x2項(xiàng)和x項(xiàng),求這兩個(gè)多項(xiàng)式的乘積.
分析:根據(jù)多項(xiàng)式與多項(xiàng)式的乘法法則展開(kāi),再利用不含的項(xiàng)系數(shù)等于0列式即可求出m、n的值,再把m、n的值代入即可求出乘積.
解答:解:(x-2)(x2-mx-n),
=x3-mx2-nx-2x2+2mx+2n,
=x3-(m+2)x2+(2m-n)x+2n,
∵不含x2項(xiàng)和x項(xiàng),
∴-(m+2)=0,2m-n=0,
解得m=-2,n=-4,
∴乘積為x3-8.
點(diǎn)評(píng):本題主要考查多項(xiàng)式的乘法,運(yùn)用不含某一項(xiàng)就是該項(xiàng)的系數(shù)等于0是解本題的關(guān)鍵,熟練掌握運(yùn)算法則也很重要.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、已知多項(xiàng)式(x2+mx+n)(x2-3x+4)展開(kāi)后不含x3和x2項(xiàng),試求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、已知m為整數(shù),多項(xiàng)式x2+mx+4是完全平方式,則m=
±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列解答過(guò)程,然后回答問(wèn)題.已知多項(xiàng)式x3+4x2+mx+5有一個(gè)因式(x+1),求m的值.
解法一:設(shè)另一個(gè)因式為(x2+ax+b),則x3+4x2+mx+5=(x+1)(x2+ax+b)=x2+(a+1)x2+(a+b)x+b,
∴a+1=4,a+b=m,b=5,∴a=3,b=5,∴m=8;
解法二:令x+1=0得x=-1,即當(dāng)x=-1時(shí),原多項(xiàng)式為零,
∴(-1)3+4×(-1)2+m×(-1)+5=0,∴m=8
用以上兩種解法之一解答問(wèn)題:若x3+3x2-3x+k有一個(gè)因式是x+1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知多項(xiàng)式x2-mx-n與x-2的乘積中不含x2項(xiàng)和x項(xiàng),求這兩個(gè)多項(xiàng)式的乘積.

查看答案和解析>>

同步練習(xí)冊(cè)答案