精英家教網 > 初中數學 > 題目詳情
請寫出一個符合下列條件的反比例函數解析式:(1)反比例函數的比例系數k是無理數;(2)圖象的一個分支在第二象限   
【答案】分析:根據圖象的分支在第二象限,所以可以判斷k<0;再根據k是無理數,可以得到反比例函數的比例系數.
解答:解:設函數解析式為y=
因為圖象的分支在第二象限,所以可以判斷k<0;
又因為k是無理數,所以可以得到k=,,…,答案不唯一.
點評:此題是一道開放題,考查了用待定系數法構造反比例函數的能力,是一道好題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

學校圍墻邊有一個直角三角形的花圃(如圖1所示的Rt△ABC),其中斜邊AB借助圍墻,兩條直角邊AC和BC用鐵柵欄圍成,已知AB=10米,AC=8米.
(1)求這個直角三角形花圃的面積.
(2)現在要將這個直角三角形花圃擴充成等腰三角形,設計方案要求斜邊AB不變,只能延長兩條直角邊中的一條.圖2是已經設計好的一種方案:延長BC到P,使PA=PB,把花圃擴充成等腰△PAB.設CP的長為x米,請你求出x的值,并計算△PAB的面積.
(3)請你仿照(2)中的方法,設計符合(2)中要求的方案,在下列各圖中
畫出擴充后的等腰三角形花圃△PAB的示意圖,并直接寫出△PAB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

學校圍墻邊有一個直角三角形的花圃(如圖1所示的Rt△ABC),其中斜邊AB借助圍墻,兩條直角邊AC和BC用鐵柵欄圍成,已知AB=10米,AC=8米.
(1)求這個直角三角形花圃的面積.
(2)現在要將這個直角三角形花圃擴充成等腰三角形,設計方案要求斜邊AB不變,只能延長兩條直角邊中的一條.圖2是已經設計好的一種方案:延長BC到P,使PA=PB,把花圃擴充成等腰△PAB.設CP的長為x米,請你求出x的值,并計算△PAB的面積.
(3)請你仿照(2)中的方法,設計符合(2)中要求的方案,在下列各圖中
畫出擴充后的等腰三角形花圃△PAB的示意圖,并直接寫出△PAB的面積.

查看答案和解析>>

同步練習冊答案