【題目】如圖,要測(cè)量一垂直于水平面的建筑物AB的高度,小明從建筑物底端B出發(fā),沿水平方向向右走30米到達(dá)點(diǎn)C,又經(jīng)過(guò)一段坡角為30°,長(zhǎng)為20米的斜坡CD,然后再沿水平方向向右走了50米到達(dá)點(diǎn)E(A,BC,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,求建筑物AB的高度.(結(jié)果保留根號(hào),參考數(shù)據(jù):sin24°≈cos24°≈,tan24°)

【答案】筑物AB的高度是米.

【解析】

BMEDED的延長(zhǎng)線于MCNDMN.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù),構(gòu)建方程即可解決問(wèn)題.

解:作BMEDED的延長(zhǎng)線于M,CNDMN

Rt△CDN中,∵∠CDN30°,CD20米,

CNCDsin30°10米,DNCDcos30°5米,

四邊形BMNC是矩形,

BMCN10米,BCMN30米,EMMN+DN+DE(80+5)米,

中,

答:建筑物AB的高度是米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(b,c為常數(shù))

1)若拋物線的頂點(diǎn)坐標(biāo)為(1,1),求b,c的值;

2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),求c的取值范圍;

3)在(1)的條件下,存在正實(shí)數(shù)m,n( mn),當(dāng)mxn時(shí),恰好有,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委準(zhǔn)備組織“漢字聽(tīng)寫(xiě)”大賽.九年級(jí)一班為推選學(xué)生參加學(xué)校的這次活動(dòng),在班級(jí)內(nèi)舉行了一次選拔賽,并把選拔賽的成績(jī)分為,,,四個(gè)等級(jí),根據(jù)成績(jī)統(tǒng)計(jì)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給出的信息解答下列各題.

1)九年級(jí)一班共有多少人?

2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中等級(jí)為“D”的部分所對(duì)應(yīng)的圓心角度數(shù);

3)現(xiàn)準(zhǔn)備從等級(jí)為“A”的四名同學(xué)中,隨機(jī)抽選出兩名同學(xué)代表班級(jí)參加學(xué)校的“漢字聽(tīng)寫(xiě)”大賽.已知同一小組的李華和張軍的成績(jī)都是“A”等,請(qǐng)用列表法(或樹(shù)狀圖法)求恰好抽到李華和張軍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OAB在平面直角坐標(biāo)系中的位置如圖所示,將ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到OA1B1

1)畫(huà)出OA1B1,并寫(xiě)出點(diǎn)A1、B1的坐標(biāo);

2)求ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的最高點(diǎn)的縱坐標(biāo)是2

1)求拋物線的表達(dá)式;

2)將拋物線在之間的部分記為圖象,將圖象沿直線x=1翻折,翻折后圖象記為,圖象組成G,直線:和圖象Gx軸上方的部分有兩個(gè)公共點(diǎn),求k的取值范圍;

3)直線:與圖象Gx軸上方的部分分別交于AM、P、Q四點(diǎn),若AM=2PQ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:將正m邊形(m≥3)不斷向外擴(kuò)展,每擴(kuò)展一個(gè)正m邊形每條邊上的點(diǎn)的個(gè)數(shù)(以下簡(jiǎn)稱(chēng)點(diǎn)數(shù)”)就增加一個(gè),則n個(gè)正m邊形的點(diǎn)數(shù)總共有多少個(gè)?

問(wèn)題探究:為了解決上面的問(wèn)題,我們將采取將一般問(wèn)題特殊化的策略,先從簡(jiǎn)單和具體的情形入手:

探究一:n個(gè)正三角形的點(diǎn)數(shù)總共有多少個(gè)?

如圖11,1個(gè)正三角形的點(diǎn)數(shù)總共有3個(gè);如圖12,2個(gè)正三角形的點(diǎn)數(shù)總共有6個(gè);如圖13,3個(gè)正三角形的點(diǎn)數(shù)總共有10個(gè);;n個(gè)正三角形的點(diǎn)數(shù)總共有   個(gè).

探究二:n個(gè)正四邊形的點(diǎn)數(shù)總共有多少個(gè)?

如圖211個(gè)正四邊形的點(diǎn)數(shù)總共有4個(gè);如圖22,2個(gè)正四邊形的點(diǎn)數(shù)總共有9個(gè);

如圖23,連接AC,得到兩個(gè)三角形△ABC和△ADC,這兩個(gè)三角形相同之處在于,BC邊與CD邊都有相同個(gè)數(shù)的點(diǎn),即4個(gè)點(diǎn),并且與BC、CD平行的邊上依次減少一個(gè)點(diǎn)直至頂點(diǎn)A,每個(gè)三角形都有10個(gè)點(diǎn),兩個(gè)三角形就是2×10個(gè)點(diǎn).因?yàn)檫@兩個(gè)三角形在AC上有4個(gè)點(diǎn)重合,所以3個(gè)正四邊形的點(diǎn)數(shù)總共有2×10416(個(gè))

如圖24,4個(gè)正四邊形的點(diǎn)數(shù)總共有   個(gè);……n個(gè)正四邊形的點(diǎn)數(shù)總共有   個(gè).

探究三:n個(gè)正五邊形的點(diǎn)數(shù)總共有多少個(gè)?

類(lèi)比探究二的方法,求4個(gè)正五邊形的點(diǎn)數(shù)總共有多少個(gè)?并敘述你的探究過(guò)程.

n個(gè)正五邊形的點(diǎn)數(shù)總共有   個(gè).

探究四:n個(gè)正六邊形的點(diǎn)數(shù)總共有   個(gè).

問(wèn)題解決:n個(gè)正m邊形的點(diǎn)數(shù)總共有   個(gè).

實(shí)際應(yīng)用:若99個(gè)正m邊形的點(diǎn)數(shù)總共有39700個(gè),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)yx0)的圖象與AB相交于點(diǎn)D.與BC相交于點(diǎn)E,且BD3,AD6,△ODE的面積為15,若動(dòng)點(diǎn)Px軸上,則PD+PE的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A0 A1= A1A2= A2A3,圖中的螺旋形由一系列直角三角形組成,則第n個(gè)三角形的面積為_________,周長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大的方便了人們的出行.中國(guó)北斗導(dǎo)航已經(jīng)全球組網(wǎng),它已經(jīng)走進(jìn)了人們的日常生活.如圖,某校組織學(xué)生到某地(用A表示)開(kāi)展社會(huì)實(shí)踐活動(dòng),車(chē)到達(dá)B地后,發(fā)現(xiàn)A地恰好在B地的正北方向,且距離B10千米.導(dǎo)航顯示車(chē)輛應(yīng)沿北偏東60°方向行駛至C地,再沿北偏西45°方向行駛一段距離才能到達(dá)A地.求AC兩地間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案