如圖,已知⊙和⊙相交于A,B,經(jīng)過點A的直線分別交兩圓于點C,D,以過點B的直線分別交兩圓與點E,F(xiàn),且CD∥EF.

求證:CE=DF.

答案:略
解析:

證明:連結AB

四邊形CEFD為平行四邊形CE=DF


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF精英家教網(wǎng)與AC相交于點P.
(1)求證:PA•PE=PC•PF;
(2)求證:
PE2
PC2
=
PF
PB
;
(3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙M和⊙N相交于點A、B,過點B作CD⊥AB,分別交⊙M和⊙N于C、D,過點B任作一直線分別交⊙M和⊙N于E、F.
(1)求證:△AEF∽△ACD;
(2)證明AC、AD分別是⊙M和⊙N的直徑;
(3)你認為AE與AF的比值是一個常數(shù)嗎?是,請證明它;不是,請說出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF與AC相交于點P.
(1)求證:PA•PE=PC•PF;
(2)求證:數(shù)學公式;
(3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年高中自主招生考試數(shù)學模擬試卷4(解析版) 題型:解答題

如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF與AC相交于點P.
(1)求證:PA•PE=PC•PF;
(2)求證:;
(3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年湖北省黃岡市羅田一中自主招生考試數(shù)學試卷(解析版) 題型:解答題

(1999•福州)如圖,已知⊙O和⊙O′相交于A、B兩點,過點A作⊙O′的切線交⊙O于點C,過點B作兩圓的割線分別交⊙O、⊙O′于E、F,EF與AC相交于點P.
(1)求證:PA•PE=PC•PF;
(2)求證:;
(3)當⊙O與⊙O′為等圓時,且PC:CE:EP=3:4:5時,求△PEC與△FAP的面積的比值.

查看答案和解析>>

同步練習冊答案