如圖,ABCD是邊長(zhǎng)為1的正方形,其中、、的圓心依次是A、B、C.
(1)求點(diǎn)D沿三條圓弧運(yùn)動(dòng)到點(diǎn)G所經(jīng)過(guò)的路線長(zhǎng);
(2)判斷直線GB與DF的位置關(guān)系,并說(shuō)明理由.

【答案】分析:本題考查的是弧長(zhǎng)公式以及全等三角形的判定求出△FDC≌△GBC.
解答:解:(1)∵AD=1,∠DAE=90°,
的長(zhǎng),
同理,的長(zhǎng),的長(zhǎng),
所以,點(diǎn)D運(yùn)動(dòng)到點(diǎn)G所經(jīng)過(guò)的路線長(zhǎng)l=l1+l2+l3=3π.

(2)直線GB⊥DF.
理由如下:延長(zhǎng)GB交DF于H.
∵CD=CB,∠DCF=∠BCG,CF=CG,
∴△FDC≌△GBC.
∴∠F=∠G,
又∵∠F+∠FDC=90°,
∴∠G+∠FDC=90°,
即∠GHD=90°,
故GB⊥DF.
點(diǎn)評(píng):求出弧長(zhǎng)后可算出周長(zhǎng).“化曲面為平面”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,ABCD是邊長(zhǎng)為6的正方形,請(qǐng)你建立一個(gè)適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并分別寫(xiě)出A、B、C、D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為2 a的正方形,AB為半圓O的直徑,CE切⊙O于E,與BA的延長(zhǎng)線交于F,求EF的長(zhǎng).
答:EF=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為9的正方形,E是BC上的一點(diǎn),BE=
12
EC.將正方形折疊,使得點(diǎn)A與點(diǎn)E重合,折痕為MN,則S△ANE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為1的正方形,EFGH是內(nèi)接于ABCD的正方形,AE=a,AF=b,若SEFGH=
2
3
,則|b-a|等于( 。
A、
2
2
B、
2
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是邊長(zhǎng)為1的正方形,EFGH是內(nèi)接于ABCD的正方形,AE=a,AF=b,若正方形EFGH的面積為
2
3
,則|a-b|等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案