某種上屏每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖像如圖所示.
銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
銷售單價在什么范圍時,該種商品每天的銷售利潤不低于16元?
(1)銷售單價為10元時,該種商品每天的銷售利潤最大,最大利潤為25元;
(2)當(dāng)7<x<13時,種商品每天的銷售利潤不低于16元.
(1)y="a" x2+bx-75圖象過點(diǎn)(5,0)、(7,16),
解得a="-1,b=20," 代入y="a" x2+bx-75
y=-x2+20x-75的頂點(diǎn)坐標(biāo)為(10,25)
當(dāng)x=10時,y最大=25,
(2)(7,16)關(guān)于x=10的對稱點(diǎn)是(13,16),
當(dāng)7<x<13時,種商品每天的銷售利潤不低于16元.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用,利用待定系數(shù)法求解析式,利用頂點(diǎn)坐標(biāo)求最值,利用對稱點(diǎn)求不等式的解集.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商家計(jì)劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進(jìn)貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=x+m與拋物線y=x2-2x+l交于不同的兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)).
(1)設(shè)拋物線的頂點(diǎn)為B,對稱軸l與直線y=x+m的交點(diǎn)為C,連結(jié)BM、BN,若S△MBC=S△NBC,求直線MN的解析式;
(2)在(1)條件下,已知點(diǎn)P(t,0)為x軸上的一個動點(diǎn),
①若△PMN為直角三角形,求點(diǎn)P的坐標(biāo).
②若∠MPN>90°,則t的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把函數(shù)y=t(x2-3x+2)+(1-t)(-2x+4)(t為常數(shù))稱為這兩個函數(shù)的“衍生二次函數(shù)”.已知不論t取何常數(shù),這個函數(shù)永遠(yuǎn)經(jīng)過某些定點(diǎn),則這個函數(shù)必經(jīng)過的定點(diǎn)坐標(biāo)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1, 0)、B(4, 5)兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點(diǎn)A1,A2,…,A2011在函數(shù)位于第二象限的圖象上,點(diǎn)B1,B2,…,B2011在函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,…,C2011在y軸的正半軸上,若四邊形、,…,都是正方形,則正方形的邊長為
A.2010B.2011C.2010D.2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知二次函數(shù)經(jīng)過、、C三點(diǎn),點(diǎn)是拋物線與直線的一個交點(diǎn).
(1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
(2)對于動點(diǎn),求的最大值;
(3)若動點(diǎn)M在直線上方的拋物線運(yùn)動,過點(diǎn)M做x軸的垂線交x軸于點(diǎn)F,如果直線AP把線段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動點(diǎn),過點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時,求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對稱軸上的動點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長取最小值時,求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(-1,0)、(0,3),下列結(jié)論中錯誤的是(  )
A.a(chǎn)bc<0B.9a+3b+c=0C.a(chǎn)-b="-3" D. 4ac﹣b2<0

查看答案和解析>>

同步練習(xí)冊答案