【題目】如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點(diǎn)E是 的中點(diǎn),連接AE交BC于點(diǎn)F,當(dāng)BD=5,CD=4時(shí),求AF的值.
【答案】
(1)證明:∵AB是⊙O的直徑,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切線
(2)解:∵BD=5,CD=4,
∴BC=9,
∵△ADC∽△BAC(已證),
∴ = ,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD= =2 ,
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA﹣CD=2,
在Rt△AFD中,AF= =2
【解析】(1)證明△ADC∽△BAC,可得∠BAC=∠ADC=90°,繼而可判斷AC是⊙O的切線.(2)根據(jù)(1)所得△ADC∽△BAC,可得出CA的長(zhǎng)度,繼而判斷∠CFA=∠CAF,利用等腰三角形的性質(zhì)得出AF的長(zhǎng)度,繼而得出DF的長(zhǎng),在Rt△AFD中利用勾股定理可得出AF的長(zhǎng).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識(shí),掌握切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過(guò)程中,這列火車離A地的路程與行駛時(shí)間之間的函數(shù)關(guān)系式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校準(zhǔn)備組織七年級(jí)學(xué)生參加夏令營(yíng),已知:用3輛小客車和1輛大客車每次可運(yùn)送學(xué)生105人;用一輛小客車和2輛大客車每次可運(yùn)送學(xué)生110人,現(xiàn)有學(xué)生400人,計(jì)劃租用小客車a輛,大客車b輛,一次送完,且恰好每輛車都坐滿.
(1)1輛小客車和1輛大客車都坐滿后一次可送多少名學(xué)生?
(2)請(qǐng)你幫學(xué)校設(shè)計(jì)出所有的租車方案;
(3)若小客車每輛需租金200元,大客車每輛需租金380元,請(qǐng)選出最省錢的方案,并求出最省租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是某公共汽車線路收支差額y(票價(jià)總收入減去運(yùn)營(yíng)成本)與乘客量x的函數(shù)圖象,目前這條線路虧損,為了扭虧,有關(guān)部門舉行提高票價(jià)的聽證會(huì),乘客代表認(rèn)為:公交公司應(yīng)降低運(yùn)營(yíng)成本,實(shí)現(xiàn)扭虧,公交公司認(rèn)為:運(yùn)營(yíng)成本難以下降,提高票價(jià)才能扭虧根據(jù)這兩種意見,把圖①分別改畫成圖②和圖③.則下列判斷不合理的是( 。
A. 圖①中點(diǎn)A的實(shí)際意義是公交公司運(yùn)營(yíng)后虧損1萬(wàn)元
B. 圖①中點(diǎn)B的實(shí)際意義是乘客量為1.5萬(wàn)時(shí)公交公司收支平衡
C. 圖②能反映公交公司意見
D. 圖③能反映乘客意見
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.求證:BF=2AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成,已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com