【題目】如圖,長方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的長.(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y= x2+mx+n(n≠0)與直線y=x交于A、B兩點,與y軸交于點C,OA=OB,BC∥x軸.
(1)求拋物線的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個動點(點E在點D的上方),DE= ,過D、E兩點分別作y軸的平行線,交拋物線于F、G,若設(shè)D點的橫坐標(biāo)為x,四邊形DEGF的面積為y,求x與y之間的關(guān)系式,寫出自變量x的取值范圍,并回答x為何值時,y有最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB=10.動點P從點O出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù) ;當(dāng)t=3時,OP=
(2)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時追上點P?
(3)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時PR相距2個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以A、P、Q為頂點的三角形與△ABC相似時,運動時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=x+3的圖象與x軸交于點A,二次函數(shù)y=x2+mx+n的圖象經(jīng)過點A.
(1)當(dāng)m=4時,求n的值;
(2)設(shè)m=﹣2,當(dāng)﹣3≤x≤0時,求二次函數(shù)y=x2+mx+n的最小值;
(3)當(dāng)﹣3≤x≤0時,若二次函數(shù)﹣3≤x≤0時的最小值為﹣4,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1 =∠2,∠BAC = 70°。將求∠AGD的過程填寫完整。因為EF∥AD,所以 ∠2 = 。又因為 ∠1 = ∠2,所以 ∠1 = ∠3。 所以AB∥ 。所以∠BAC + = 180°。又因為∠BAC = 70°,所以∠AGD = 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com