【題目】如圖,矩形ABCD中,AB=6,AD=8,P,E分別是線段AC、BC上的點(diǎn),且四邊形PEFD為矩形.
(Ⅰ)若△PCD是等腰三角形時(shí),求AP的長(zhǎng);
(Ⅱ)若AP= ,求CF的長(zhǎng).
【答案】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,
∴DC=AB=6,
∴AC= =10,
要使△PCD是等腰三角形,
①當(dāng)CPCD時(shí),AP=AC﹣CP=10﹣6=4,
②當(dāng)PD=PC時(shí),∠PDC=∠PCD,
∵∠PCD+∠PAD=∠PDC+∠PDA=90°,
∴∠PAD=∠PDA,
∴PD=PA,
∴PA=PC,
∴AP= AC=5,
③當(dāng)DP=DC時(shí),如圖1,過(guò)點(diǎn)D作DQ⊥AC于Q,
則PQ=CQ,
∵S△ADC= ADDC= ACDQ,
∴DQ= = ,
∴CQ= = ,
∴PC=2CQ= ,
∴AP=AC﹣PC=10﹣ = ;
所以,若△PCD是等腰三角形時(shí),AP=4或5或 ;
(Ⅱ)如圖2,連接PF,DE記PF與DE的交點(diǎn)為O,連接OC,
∵四邊形ABCD和PEFD是矩形,
∴∠ADC=∠PDF=90°,
∴∠ADP+∠PDC=∠PDC+∠CDF,
∴∠ADP=∠CDF,
∵∠BCD=90°,OE=OD,
∴OC= ED,
在矩形PEFD中,PF=DE,
∴OC= PF,
∵OP=OF= PF,
∴OC=OP=OF,
∴∠OCF=∠OFC,∠OCP=∠OPC,
∵∠OPC+∠OFC+∠PCF=180°,
∴2∠OCP+2∠OCF=180°,
∴∠PCF=90°,
∴∠PCD+∠FCD=90°,
在Rt△ADC中,∠PCD+∠PAD=90°,
∴∠PAD=∠FCD,
∴△ADP∽△CDF,
∴ ,
∵AP= ,
∴CF= .
【解析】(Ⅰ)先求出AC,再分三種情況討論計(jì)算即可得出結(jié)論;(Ⅱ)先判斷出OC= ED,OC= PF,進(jìn)而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判斷出△ADP∽△CDF,得出比例式即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等,以及對(duì)相似三角形的應(yīng)用的理解,了解測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解2013年八年級(jí)學(xué)生課外書(shū)籍借閱情況,從中隨機(jī)抽取了40名學(xué)生課外書(shū)籍借閱情況,將統(tǒng)計(jì)結(jié)果列出如下的表格,并繪制成如圖所示的扇形統(tǒng)計(jì)圖,其中科普類(lèi)冊(cè)數(shù)占這40名學(xué)生借閱總冊(cè)數(shù)的40%.
類(lèi)別 | 科普類(lèi) | 教輔類(lèi) | 文藝類(lèi) | 其他 |
冊(cè)數(shù)(本) | 128 | 80 | m | 48 |
(1)求表格中字母m的值及扇形統(tǒng)計(jì)圖中“教輔類(lèi)”所對(duì)應(yīng)的圓心角α的度數(shù);
(2)該校2013年八年級(jí)有500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生共借閱教輔類(lèi)書(shū)籍約多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中2條直線為l1:y=﹣3x+3,l2:y=﹣3x+9,直線l1交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線l2交x軸于點(diǎn)D,過(guò)點(diǎn)B作x軸的平行線交l2于點(diǎn)C,點(diǎn)A、E關(guān)于y軸對(duì)稱,拋物線y=ax2+bx+c過(guò)E、B、C三點(diǎn),下列判斷中:
①a﹣b+c=0;②2a+b+c=5;③拋物線關(guān)于直線x=1對(duì)稱;④拋物線過(guò)點(diǎn)(b,c);⑤S四邊形ABCD=5,
其中正確的個(gè)數(shù)有( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,把矩形OABC沿對(duì)角線AC所在直線折疊,點(diǎn)B落在點(diǎn)D處,DC與y軸相交于點(diǎn)E,矩形OABC的邊OC,OA的長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+32=0的兩個(gè)根,且OA>OC.
(1)求線段OA,OC的長(zhǎng);
(2)求證:△ADE≌△COE,并求出線段OE的長(zhǎng);
(3)直接寫(xiě)出點(diǎn)D的坐標(biāo);
(4)若F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以點(diǎn)E,C,P,F(xiàn)為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】BC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓直徑的三等分點(diǎn)上,則該菱形的邊長(zhǎng)為( )
A. 或2
B. 或2
C. 或2
D. 或2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為 的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=6 ,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校召集留守兒童過(guò)端午節(jié),桌上擺有甲、乙兩盤(pán)粽子,每盤(pán)中盛有白粽2個(gè),豆沙粽1個(gè),肉粽1個(gè)(粽子外觀完全一樣).
(1)小明從甲盤(pán)中任取一個(gè)粽子,取到豆沙粽的概率是;
(2)小明在甲盤(pán)和乙盤(pán)中先后各取了一個(gè)粽子,請(qǐng)用樹(shù)狀圖或列表法求小明恰好取到兩個(gè)白粽子的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com