【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
【答案】(1)證明見解析;(2)5cm.
【解析】試題分析:(1)連接OA,因為點A在⊙O上,所以只要證明OA⊥AE即可;由同圓的半徑相等得:OA=OD,則∠ODA=∠OAD,根據(jù)角平分線可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,則AE是⊙O的切線;
(2)過點O作OF⊥CD,垂足為點F,證明四邊形AOFE是矩形,得OF=AE=4cm,由垂徑定理得:DF=3,根據(jù)勾股定理求半徑OD的長.
試題解析:
(1)連結(jié)OA,∵OA=OD,
∴∠ODA=∠OAD,
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA,
∴EC∥OA,
∵AE⊥CD,
∴OA⊥AE,
∵點A在⊙O上,
∴AE是⊙O的切線;
(2)過點O作OF⊥CD,垂足為點F,
∵∠OAE=∠AED=∠OFD=90°,
∴四邊形AOFE是矩形,
∴OF=AE=4cm,
又∵OF⊥CD,
∴DF=CD=3cm,
在Rt△ODF中,OD==5cm,
即⊙O的半徑為5cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=3,BC=5,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F.
(1)求證:四邊形CEDF是平行四邊形;
(2)① 當AE= 時,四邊形CEDF是矩形;
② 當AE= 時,四邊形CEDF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖AB∥EF,BC⊥CD,則∠α,∠β,∠γ之間的關(guān)系是( )
A.∠β=∠α+∠γ
B.∠α+∠β+∠γ=180°
C.∠α+∠β﹣∠γ=90°
D.∠β+∠γ﹣∠α=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標.
(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出A′、B′、C′的坐標.
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為減少環(huán)境污染,自2008年6月1日起,全國的商品零售場所開始實行“塑料購物袋有償使用制度”(以下簡稱“限塑令”).某班同學于6月上旬的一天,在某超市門口采用問卷調(diào)查的方式,隨機調(diào)查了“限塑令”實施前后,顧客在該超市用購物袋的情況,以下是根據(jù)100位顧客的100份有效答卷畫出的統(tǒng)計圖表的一部分:
“限塑令”實施后,塑料購物袋使用后的處理方式統(tǒng)計表
處理方式 | 直接丟棄 | 直接做垃圾袋 | 再次購物使用 | 其它 |
選該項的人數(shù)占 總?cè)藬?shù)的百分比 | 5% | 35% | 49% | 11% |
請你根據(jù)以上信息解答下列問題:
(1)補全圖1,“限塑令”實施前,如果每天約有2 000人次到該超市購物.根據(jù)這100位顧客平均一次購物使用塑料購物袋的平均數(shù),估計這個超市每天需要為顧客提供多少個塑料購物袋?
(2)補全圖2,并根據(jù)統(tǒng)計圖和統(tǒng)計表說明,購物時怎樣選用購物袋,塑料購物袋使用后怎樣處理,能對環(huán)境保護帶來積極的影響.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點M(-3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A、B兩點,則四邊形MAOB的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與拋物線相交于A和B(4,n),點P是直線AB上不同于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.設(shè)P點的橫坐標為m.
(1)直接寫出點B坐標;
(2)求拋物線的解析式;
(3)請用含m的代數(shù)式表示線段PC的長;
(4)若點P在線段AB上移動,請直接寫出△PAC為直角三角形時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com