頂點為(-2,-5)且過(1,-4)的拋物線解析式為
 
分析:利用待定系數(shù)法求解.設(shè)拋物線解析式為:y=a(x+2)2-5,然后把(1,-4)代入解析式得,-4=a•(1+3)2-5,求出a的值,再代入所設(shè)的解析式即可得到拋物線解析式.
解答:解:設(shè)拋物線解析式為:y=a(x+2)2-5,
把(1,-4)代入解析式得,-4=a•(1+2)2-5,
解得,a=
1
9

∴y=
1
9
(x+2)2-5=
1
9
x2+
4
9
x-
41
9

所以拋物線解析式為:y=
1
9
x2+
4
9
x-
41
9

故答案為y=
1
9
x2+
4
9
x-
41
9
點評:本題考查了二次函數(shù)的頂點式:y=a(x-k)2+h,其中a≠0,頂點坐標(biāo)為(k,h).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,拋物線y=x2+bx+c與x軸交于兩點A、B,與y軸交于點C,其中A精英家教網(wǎng)在B的左側(cè),B的坐標(biāo)是(3,0).將直線y=kx沿y軸向上平移3個單位長度后恰好經(jīng)過點B、C.
(1)求k的值;
(2)求直線BC和拋物線的解析式;
(3)求△ABC的面積;
(4)設(shè)拋物線頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點C在x軸負(fù)半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點為P,求四邊形OAPB的面積;
(3)有兩動點M,N同時從點O出發(fā),其中點M以每秒2個單位長度的速度沿折線OAB按O→A→B的路線運動,點N以每秒4個單位長度的速度沿折線按O→B→A的路線運動,當(dāng)M、N兩點相遇時,它們都停止運動.設(shè)M、N同時從點O出發(fā)t秒時,△OMN的面積為S.
①請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②判斷在①的過程中,t為何值時,△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江二模)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點A(-1,0)、B(3,0),與y軸的正半軸交于點C,頂點為E.
(1)求拋物線解析式及頂點E的坐標(biāo);
(2)如圖,過點E作BC平行線,交x軸于點F,在不添加線和字母情況下,圖中面積相等的三角形有:
△BCF與△BCE
△BCF與△BCE
;
(3)將拋物線向下平移,與x軸交于點M、N,與y軸的正半軸交于點P,頂點為Q.在四邊形MNQP中滿足S△NPQ=S△MNP,求此時直線PN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湛江)如圖,在平面直角坐標(biāo)系中,頂點為(3,4)的拋物線交y軸于A點,交x軸于B、C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,-5).
(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有什么位置關(guān)系,并給出證明;
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=ax+c與拋物線y=ax2+bx+c(a≠0,b≠0)分別相交于A(0,C),B(1-b,m)兩點,拋物線y=ax2+bx+c與x軸交于C,D兩點,頂點為P.
(1)求a的值.
(2)如果CD=2,當(dāng)-1≤x≤1時,拋物線y=ax2+bx+c的最大值與最小值的差為4,求點的B坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案