【題目】計算或解方程:
(1)計算下列各題
①(π﹣3.14)0+(﹣)2﹣3﹣2;
②(3a﹣1)2﹣(3a﹣2)(3a+4);
③(12a5b7﹣8a4b6﹣4a4b2)÷(﹣2a2b)2;
(2)解分式方程:.
【答案】(1)①1;②9﹣12a;③3ab5﹣2b4+1;(2)x=﹣.
【解析】
(1)①原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則計算即可求出值;②原式利用完全平方公式,以及多項式乘以多項式法則計算即可求出值;③原式利用冪的乘方與積的乘方運算法則計算,再利用多項式除以單項式法則計算即可求出值;
(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
解:(1)①原式=1+﹣=1;
②原式=9a2﹣6a+1﹣9a2﹣6a+8=9﹣12a;
③原式=(12a5b7﹣8a4b6﹣4a4b2)÷(4a4b2)=3ab5﹣2b4+1;
(2)去分母得:x2﹣x=2x+4+x2+x﹣2,
解得:x=﹣,
經(jīng)檢驗x=﹣是分式方程的解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形OABC的頂點A,B的坐標分別為A(6,0),B(6,4),D是BC的中點,動點P從O點出發(fā),以每秒1個單位長度的速度,沿著O→A→B→D運動,設點P運動的時間為t秒(0<t<13).
(1)①點D的坐標是(___,___);
②當點P在AB上運動時,點P的坐標是(___,___)(用t表示);
(2)寫出△POD的面積S與t之間的函數(shù)關系式,并求出△POD的面積等于9時點P的坐標;
(3)當點P在OA上運動時,連接BP,將線段BP繞點P逆時針旋轉(zhuǎn),點B恰好落到OC的中點M處,則此時點P運動的時間t=___秒.(直接寫出參考答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館客房部有個房間供游客居住,當每個房間的定價為每天元時,所有房間剛好可以住滿,根據(jù)經(jīng)驗發(fā)現(xiàn),每個房間的定價每增加元,就會有個房間空閑,對有游客入住的房間,賓館需對每個房間支出每天元的各種費用.設每個房間的定價增加元,每天的入住量為個,客房部每天的利潤為元.
求與的函數(shù)關系式;
求與的函數(shù)關系式,并求客房部每天的最大利潤是多少?
當為何值時,客房部每天的利潤不低于元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與坐標軸分別交于、兩點,拋物線過、兩點,點為線段上一動點,過點作軸于點,交拋物線于點.
求拋物線的解析式.
求面積的最大值.
連接,是否存在點,使得和相似?若存在,求出點坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+4交x軸于點A、B,交y軸于點C,連結(jié)AC,BC,D是線段OB上一動點,以CD為一邊向右側(cè)作正方形CDEF,連結(jié)BF,交DE于點P.
(1)試判斷△ABC的形狀,并說明理由;
(2)求證:BF⊥AB.
(3)當點D從點O沿x軸正方向移動到點B時,點E所走過的路線長為______;
(4)探究當點D在何處時,△FBC是等腰三角形,并求出相應的BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形是邊長為的正方形,以為直徑向正方形內(nèi)作半圓,為半圓上一動點(不與、重合),當________時,為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①兩條對角線相等的四邊形是矩形;②有一組對邊相等,一組對角是直角的四邊形是矩形;③有一個角為直角,兩條對角線相等的四邊形是矩形;④四個角都相等的四邊形是矩形⑤相鄰兩邊都互相垂直的四邊形是矩形.其中判斷正確的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃購進一批甲、乙兩種玩具,已知件甲種玩具的進價與件乙種玩具的進價的和為元,件甲種玩具的進價與件乙種玩具的進價的和為元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過件,超出部分可以享受折優(yōu)惠,若購進件甲種玩具需要花費元,請你寫出與的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,點A、點B分別是y軸、x軸上的兩個動點,點C在第三象限,直角邊AC交x軸于點D,斜邊BC交y軸于點E.
(1)若A(0,1),B(2,0),畫出圖形并求C點的坐標;
(2)若點D恰為AC中點時,連接DE,畫出圖形,判斷∠ADB和∠CDE大小關系,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com