如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A,B兩點,AB=16cm,直線l平移多少厘米時能與⊙O相切?

【答案】分析:連接OA,延長CO交⊙O于D,由垂徑定理得OC平分AB.AH=8,由勾股定理可得OH=6,求得CH=4cm,DH=16cm.
解答:解法1:如圖,連接OA,延長CO交⊙O于D,
∵l⊥OC,
∴OC平分AB,
∴AH=8,
在Rt△AHO中,,
∴CH=4cm,DH=16cm.
答:直線AB向左移4cm,或向右平移16cm時與圓相切.(8分)

解法2:設直線AB平移xcm時能與圓相切,(10-x)2+82=102(3分)
x1=16,x2=4,
∴CH=4cm,DH=16cm.(8分)
答:略.(只答一個方向的平移扣2分)
點評:本題利用了垂徑定理和勾股定理求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點,AB=8cm,則l沿OC所在直線向下平移與⊙O相切時,移動的距離應等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點,AB=8cm,若l要與⊙O相切,則要沿OC所在直線向下平移( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O的半徑OC垂直弦AB于點H,連接BC,過點A作弦AE∥BC,過點C作CD∥BA交精英家教網EA延長線于點D,延長CO交AE于點F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A、B兩點,AB=16cm,則直線l平移
4或16
4或16
厘米時能與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑OC與直徑AB垂直,點P在OB上,CP的延長線交⊙O于點D,在OB的延長線上取點E,使ED=EP.
(1)求證:ED是⊙O的切線;
(2)當OC=2,ED=2時,求∠E的正切值tanE和圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案