如圖,拋物線y=ax2+bx-
3
交x軸于A(-3,0)、B(1,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D在拋物線上,且CDAB,對(duì)稱軸直線l交x軸于點(diǎn)M,連結(jié)CM,將∠CMB繞點(diǎn)M旋轉(zhuǎn),旋轉(zhuǎn)后的兩邊分別交直線BC、直線CD于點(diǎn)E、F.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),射線MF與拋物線的交點(diǎn)坐標(biāo)是______;
(3)若ME=
13
CF,求點(diǎn)E的坐標(biāo).
(1)因?yàn)閽佄锞過(guò)A(-3,0)、B(1,0)兩點(diǎn),
0=9a-3b-
3
0=a+b-
3
,
解得:
a=
3
3
b=
2
3
3
,
y=
3
3
x2+
2
3
3
x-
3
;

(2)∵OB=1,BC=2,
∴∠BCO=30°,
∴∠CBO=60°,
∴△MBC是等邊三角形,
∴∠CMB=60°,
∴∠BMC=∠EMF=60°,
當(dāng)點(diǎn)E為BC中點(diǎn)時(shí),
∴∠BME=∠CME=30°,
∴∠FMC=30°,
∴MF是拋物線的對(duì)稱軸,
∴射線MF與拋物線的交點(diǎn)是拋物線的頂點(diǎn),
y=
3
3
x2+
2
3
3
x-
3
,
∴頂點(diǎn)坐標(biāo)為:(-1,-
4
3
3
)


(3)∵OA=3,OB=1,OC=
3

OB
OC
=
OC
OA
=
1
3
,
又∠AOC=∠BOC=90°,
∴△AOC△COB,
∴∠OAC=∠BCO,
∴∠ACB=90°,
∵M(jìn)為AB中點(diǎn),
∴CM=BM,
∵OB=1,BC=2,
∴∠BCO=30°,
∴∠CBO=60°,
∴△MBC是等邊三角形,
∴∠CMB=∠MCB=60°,
∵ABCD,
∴∠ACD=30°,
∴∠BCD=120°,
∴∠BCD+∠EMF=180°,
∴∠MEC+∠MFC=180°,
∴∠MEB=∠MFC,
又∵∠EMB=∠CMF,
BM=CM
∠EMB=∠CMF
∠MEB=∠MFC
,
∴△MBE≌△MCF,
∴MF=ME,
又∵M(jìn)E=
13
CF,
∴MF=
13
CF,
令對(duì)稱軸與CD交于點(diǎn)H,點(diǎn)F的橫坐標(biāo)為t,
在直角△MHF中MF2=MH2+HF2
(
13
t)2=(
3
)2+(t+1)2
,
t1=-
1
2
,t2=
2
3
,
當(dāng)t=-
1
2
時(shí),BE=CF=
1
2

過(guò)點(diǎn)E作EG⊥x軸,垂足為G,
在直角△BGE中,
∵∠GBE=60°,
∴∠GEB=30°,
∴GB=
1
2
BE
=
1
4
,
∴GE=
3
4

∴E(
3
4
,-
3
4
),
同理,當(dāng)t=
2
3
時(shí),點(diǎn)E(
4
3
,
3
3
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,Rt△OAB的OA邊在x軸上,OB邊在y軸上,且OA=2,AB=
5
,將△OAB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)90°后得△OCD,已知點(diǎn)E的坐標(biāo)是(2、2)
(1)求經(jīng)過(guò)D、C、E點(diǎn)的拋物線的解析式;
(2)點(diǎn)M(x、y)是拋物線上任意點(diǎn),當(dāng)0<x<2時(shí),過(guò)M作x軸的垂線交直線AC于N,試探究線段MN是否存在最大值,若存在,求出最大值是多少?并求出此時(shí)M點(diǎn)的坐標(biāo);
(3)P為直線AC上一動(dòng)點(diǎn),連接OP,作PF⊥OP交直線AE于F點(diǎn),是否存在點(diǎn)P,使△PAF是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(如005•寧波)已知拋物線y=-x-如kx+rk(k>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,以AB為直徑的⊙E交y軸于點(diǎn)y、著(如圖),且y著=0,G是劣弧Ay上的動(dòng)點(diǎn)(不與點(diǎn)A、y重合),直線CG交x軸于點(diǎn)P.
(1)求拋物線的解析式;
(如)當(dāng)直線CG是⊙E的切線時(shí),求ca左∠PC右的值;
(r)當(dāng)直線CG是⊙E的割線時(shí),作GM⊥AB,垂足為y,交P著于點(diǎn)M,交⊙E于另一點(diǎn)左,設(shè)M左=c,GM=u,求u關(guān)于c的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)為P(1,-2),且經(jīng)過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B和C.

(1)求這個(gè)二次函數(shù)的解析式,并求出點(diǎn)C坐標(biāo)及∠ACB的大;
(2)設(shè)D為線段OC上一點(diǎn),滿足∠DPC=∠BAC,求D的坐標(biāo);
(3)在x軸上,是否存在點(diǎn)M,使得以M為圓心的圓能與直線AC、直線PC及y軸都相切?如果存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
5
4
x2+
17
4
x+1與y軸交于A點(diǎn),過(guò)點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0)
(1)求直線AB的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動(dòng),過(guò)點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,MN的長(zhǎng)度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問(wèn)對(duì)于所求的t值,平行四邊形BCMN是否菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△ABC是邊長(zhǎng)為4的等邊三角形,AB在x軸上,點(diǎn)C在第一象限,AC交y軸于點(diǎn)D,點(diǎn)A的坐標(biāo)為(-1,0).
(1)求B、C、D三點(diǎn)的坐標(biāo);
(2)拋物線y=ax2+bx+c經(jīng)過(guò)B、C、D三點(diǎn),求它的解析式;
(3)過(guò)點(diǎn)D作DEAB交經(jīng)過(guò)B、C、D三點(diǎn)的拋物線于點(diǎn)E,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,與x軸相交于A、B兩點(diǎn)(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點(diǎn)B、C,且BF=FC=10米.
(1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點(diǎn)P在線段BC上,若設(shè)PM的長(zhǎng)為x米,矩形NPME的面積為y平方米,求y與x的函數(shù)關(guān)系式,并求當(dāng)x為何值時(shí),安置區(qū)的面積y最大,最大面積為多少?
(2)因三峽庫(kù)區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內(nèi)安置30戶移民農(nóng)戶,每戶建房占地100平方米,政府給予每戶4萬(wàn)元補(bǔ)助,安置區(qū)內(nèi)除建房外的其余部分每平方米政府投入100元作為基礎(chǔ)建設(shè)費(fèi),在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設(shè)施施工費(fèi).為減輕政府的財(cái)政壓力,決定鼓勵(lì)一批非安置戶到此安置區(qū)內(nèi)建房,每戶建房占地120平方米,但每戶非安置戶應(yīng)向政府交納土地使用費(fèi)3萬(wàn)元.為保護(hù)環(huán)境,建房總面積不得超過(guò)安置區(qū)面積的50%.若除非安置戶交納的土地使用費(fèi)外,政府另外投入資金150萬(wàn)元,請(qǐng)問(wèn)能否將這30戶移民農(nóng)戶全部安置?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將現(xiàn)有一根長(zhǎng)為1的鐵絲.
(1)若把它截成四段然后圍成圖1所示的“口”形的矩形框,當(dāng)矩形框的長(zhǎng)a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大.
(2)若把它截成六段,①可以圍成圖2所示的“目”形的矩形框,當(dāng)矩形框的長(zhǎng)a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大;②可以圍成圖3所示的“田”形矩形框,當(dāng)矩形框的長(zhǎng)a與矩形框的寬b滿足a=______b時(shí)所圍成的矩形框面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案