(2012•延慶縣二模)已知:如圖,直線y=
1
3
x
與雙曲線y=
k
x
交于A、B兩點,且點A的坐標為(6,m).
(1)求雙曲線y=
k
x
的解析式;
(2)點C(n,4)在雙曲線y=
k
x
上,求△AOC的面積;
(3)在(2)的條件下,在x軸上找出一點P,使△AOC的面積等于△AOP的面積的三倍.請直接寫出所有符合條件的點P的坐標.
分析:(1)先把點A(6,m)代入y=
1
3
x可求出m確定A點坐標,然后把A點坐標再代入y=
k
x
即可求出k的值,從而確定雙曲線y=
k
x
的解析式;
(2)作CD⊥x軸于D點,AE⊥x軸于E點,先把點C(n,4)代入y=
12
x
可求出n的值,則可確定點C的坐標為(3,4),根據(jù)反比例函數(shù)的性質得到S△OCD=S△AOE=
1
2
×12=6,然后利用
S△AOC=S四邊形COEA-S△AOE=S四邊形COEA-S△COD=S梯形CDEA,進行計算;
(3)由(2)得到S△AOC=9,則S△AOP=3,而A點坐標為(6,2),設P點坐標為(x,0),則
1
2
×2×|x|=3,解出x即可得到P點坐標.
解答:解:(1)∵點A(6,m)在直線y=
1
3
x上,
∴m=
1
3
×6=2,
∵點A(6,2)在雙曲線y=
k
x
上,
2=
k
6
,解得k=12,
∴雙曲線的解析式為y=
12
x


(2)作CD⊥x軸于D點,AE⊥x軸于E點,如圖,
∵點C(n,4)在雙曲線y=
12
x
上,
4=
12
n
,解得n=3,即點C的坐標為(3,4),
∵點A,C都在雙曲線y=
12
x
上,
∴S△OCD=S△AOE=
1
2
×12=6,
∴S△AOC=S四邊形COEA-S△AOE=S四邊形COEA-S△COD=S梯形CDEA
∴S△AOC=
1
2
(CD+AE)•DE=
1
2
(4+2)×(6-3)=9;
(3)∵S△AOC=9,
∴S△AOP=3,
設P點坐標為(x,0),而A點坐標為(6,2),
∴S△AOP=
1
2
×2×|x|=3,解得x=±3,
∴P(3,0)或P(-3,0).
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)圖象的交點坐標滿足兩函數(shù)的解析式.也考查了待定系數(shù)法求函數(shù)的解析式以及三角形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•延慶縣二模)如圖,⊙O的半徑為2,點A為⊙O上一點,OD⊥弦BC于點D,OD=1,則∠BAC的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•延慶縣二模)如圖,等邊△ABC中,邊長AB=3,點D在線段BC上,點E在射線AC上,點D沿BC方向從B點以每秒1個單位的速度向終點C運動,點E沿AC方向從A點以每秒2個單位的速度運動,當D點停止時E點也停止運動,設運動時間為t秒,若D、E、C三點圍成的圖形的面積用y來表示,則y與t的圖象是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•延慶縣二模)閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點B為旋轉中心將△ABP逆時針旋轉60°得到△A′BC,連接A′A,當點A落在A′C上時,此題可解(如圖2).
請你回答:AP的最大值是
6
6

參考小偉同學思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內部一點,則AP+BP+CP的最小值是
2
2
+2
6
(或不化簡為
32+16
3
2
2
+2
6
(或不化簡為
32+16
3
.(結果可以不化簡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•延慶縣二模)已知:關于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點,連接這兩點間的線段,并以這條線段為直徑在x軸的上方作半圓P,設直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點時,求出b的取值范圍.

查看答案和解析>>

同步練習冊答案